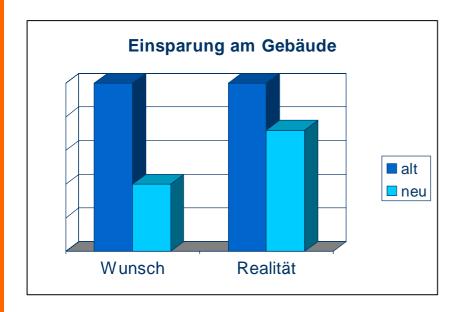
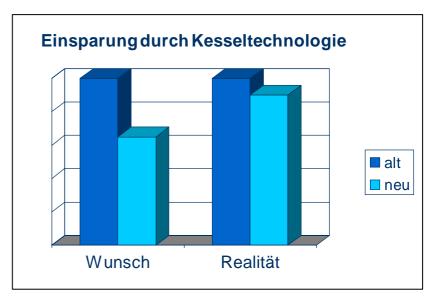


OPTIMIERUNG VON HEIZUNGSANLAGEN

Stadtwerke Bad Pyrmont 18.01.07


FH Braunschweig/Wolfenbüttel

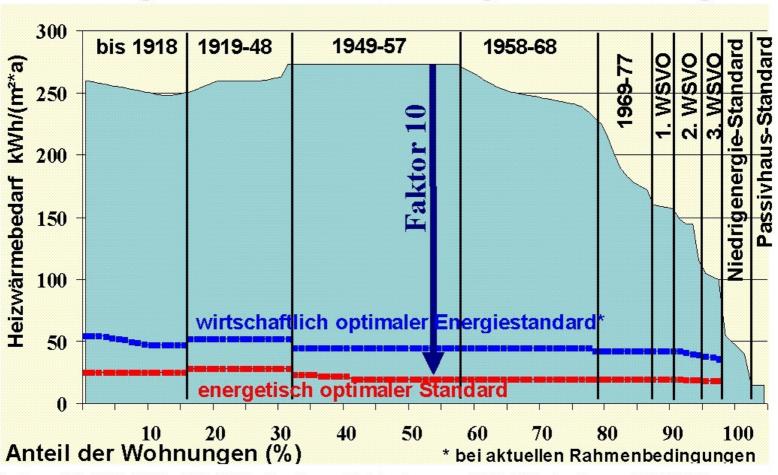


Traurige Bilanz in der Praxis

Die erhoffte Heizenergieeinsparung im Neubau um den Faktor 2,5 (seit 1977) trat leider nicht ein (Novellierungen: Wärmeschutz- und Heizungsanlagenverordnung).

Gebäude, Technik und Nutzer werden nicht als System angesehen. Es erfolgt keine Optimierung.

Integrierte Planung notwendig


Einflüsse auf den Energieverbrauch eines Gebäudes

Energieeinsparpotentiale im Bestand

Schema des Heizenergie-Reduktionspotenzials im Wohngebäudebestand durch energetische Sanierung

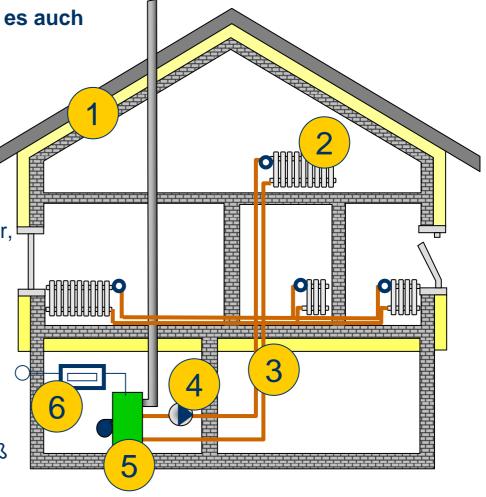
Quellen: ARENHA 1993, IWU 1994, Bundesarchitektenkammer 1995, Schulze Darup 1998/2000

ANLAGEN: FRÜHER UND HEUTE

Anlagenauslegung vor 30 Jahren

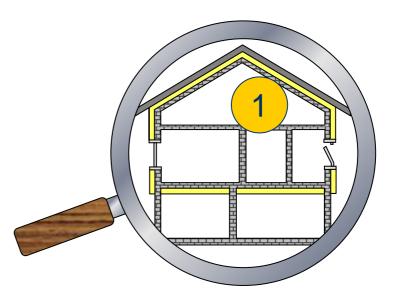
So wird es gelehrt und so wurde es auch früher mit Erfolg durchgeführt:

1. Heizlastermittlung (DIN 4701)


2. Heizkörperauslegung mit 90/70 °C einheitlich

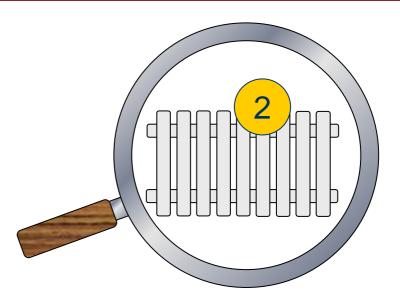
Rohrnetzberechnung mit
 100 Pa/m, Ventilautorität
 0,5 am ungünstigsten Heizkörper,
 X_P = 2 K für die
 Thermostatventile

4. Angepasste Auslegung der Pumpe


5. Kessel passend zum Gebäude ohne oder mit geringem hydraulischen Widerstand

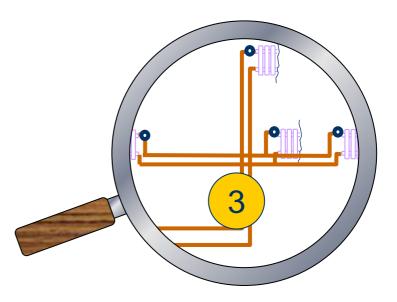
6. Einstellung der Heizkurve gemäß Heizkörperauslegung

Theorie und Praxis: Heizlastberechnung


Wunsch

 Heizlastermittlung raumweise nach EN 12831 oder bis zum Jahr 2004 nach DIN 4701-1, 2 und 3

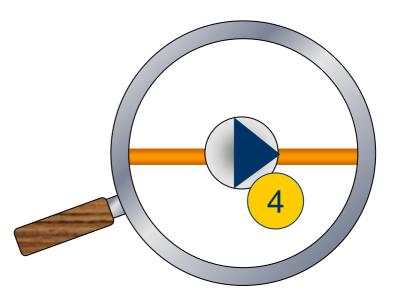
- keine Heizlastermittlung
- Daumenwerte (unabhängig ob Eck- oder innen liegenden Räumen)
- 40–100 W/m²


Wunsch

- Heizkörperauslegung nach Heizlastermittlung
- Auslegungstemperaturen einheitlich, z. B. 65/40 °C

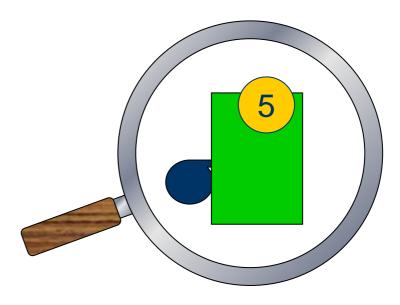
- Heizkörperauswahl (keine Auslegung) nach geschätzter Heizlast und/oder Breite des Fensters
- Auslegungsvorlauftemperaturen 55/45 °C – Herstellerempfehlung

Theorie und Praxis: Rohrnetzberechnung


Wunsch

- Rohrnetzberechnung mit Thermostatventilauslegung, ausgehend vom ungünstigsten Strang
- R = 30-70 Pa/m
- Ventilautorität ungünstigster Heizkörper $a_V = 0.3-0.7$
- Regelbereich $X_P = 1-2 \text{ K}$
- Einsatz der kleinsten THKV
- Hydraulischer Abgleich

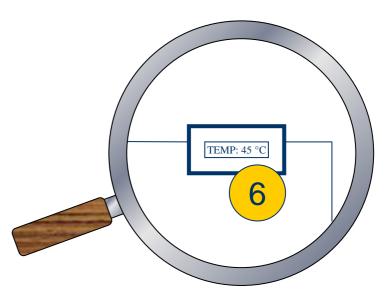
- keine Rohrnetzberechnung Einsatz gängiger Rohrdimensionen
- Thermostatventile viel zu groß und oft ohne Voreinstellung
- wahre Ventilautorität a_V < 0,1
- kein Hydraulischer Abgleich


Wunsch

- Auswahl der Pumpe nach Rohrnetzberechnung
- typische Förderhöhen 0,6–1,5 m

- Pumpen in Wandgeräten vorgegeben
- Förderhöhen nur in Ausnahmefällen einstellbar, sonst 2,5–4 m
- häufig mit Überströmventilen
- Geräuschprobleme
- Energieverschwendung von 30–80 W (€/a)

Theorie und Praxis: Kesselauslegung


Wunsch

- Festlegung der Kesselleistung
 - ohne WW-Bereitung 8-15 kW
 - mit WW-Bereitung 11–18 kW
- Kessel ohne nennenswerte hydraulische Widerstände

- Kesselleistung im EFH (11)–18–24 kW
- hohe hydraulische Widerstände

Theorie und Praxis: Regelungseinstellung

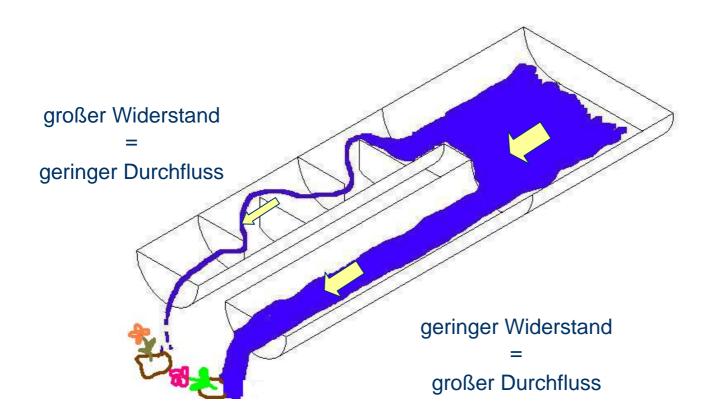
Wunsch

- Einstellung der Heizkurve am Regler
- witterungsgeführte
 Vorlauftemperaturregelung

- keine Einstellung der Heizkurve (Werkseinstellung)
- Resultat: nicht 55–65 °C sondern 80 °C Vorlauftemperatur an den Heizflächen

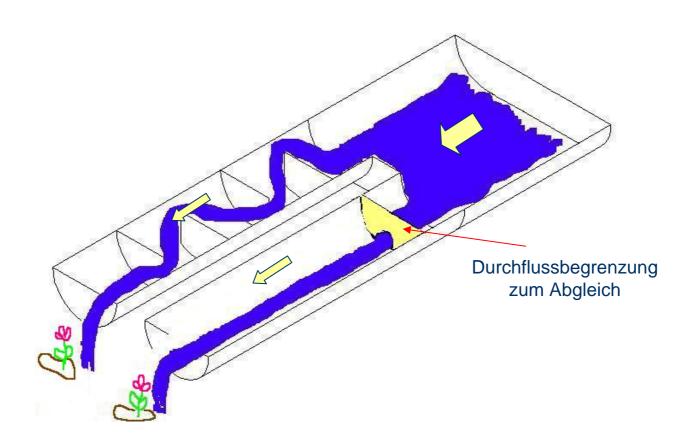
Resultate

- Einsparpotential: 20–50 kWh/(m²a)
 Primärenergie
- Die Gas- und Ölindustrie freut sich.
- Nutzerbeschwerden über Geräusche u. a.
- Handwerker degradiert auf das Zusammenbauen

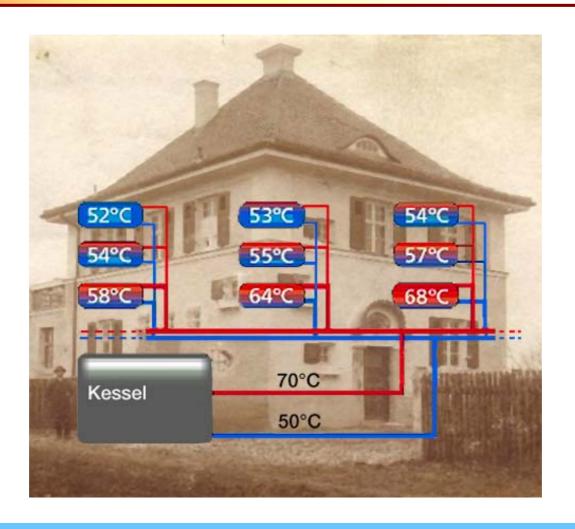


PROBLEMBEKÄMPFUNG UND DEREN KONSEQUENZEN

Was ist der hydraulische Abgleich? (I)

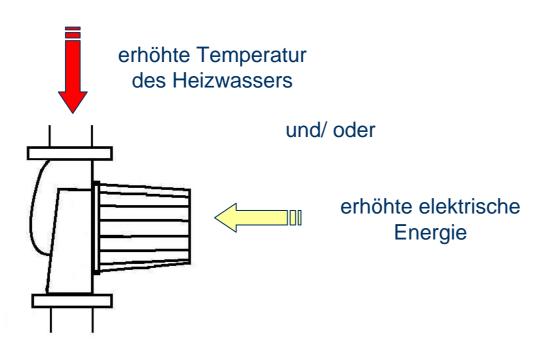

 Das Wasser verhält sich wie der elektrische Strom, es geht immer den Weg des geringsten Widerstands

Was ist der hydraulische Abgleich? (II)



 Der hydraulische Abgleich bewirkt, dass genau die Menge Wasser durch die Rohre strömt, die benötigt wird

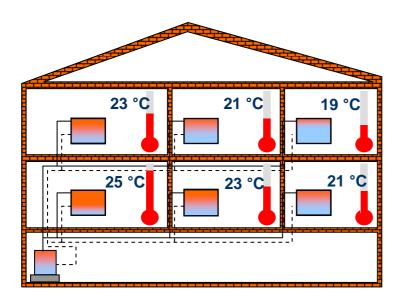
Probleme der Regelung und Hydraulik einer Heizungsanlage (I)



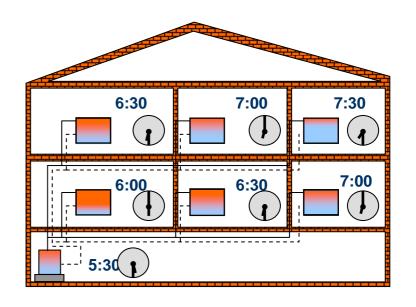
"Mein Gebäude wird nicht warm. Kann man da nicht einfach an der Heizungsanlage was einstellen, wie mein Handwerker gesagt hat ?"

Probleme der Regelung und Hydraulik einer Heizungsanlage (II)

- Erhöhung der Pumpenleistung
 Die Pumpe wird auf die höchste Drehzahlstufe eingestellt
- Anhebung der Heizkurve
 Dadurch ergeben sich h\u00f6here Vorlauftemperaturen



Folgen der "Behelfslösung" (I)


1) Ungleichmäßige Wärmeabgabe

Pumpennahe Heizkörper werden mit Wärme überversorgt und verschwenden so Heizenergie.

2) Ungleichmäßige Aufheizzeiten

Die Räume werden nach Absenkphasen unterschiedlich schnell warm.

Folgen der "Behelfslösung" (II)

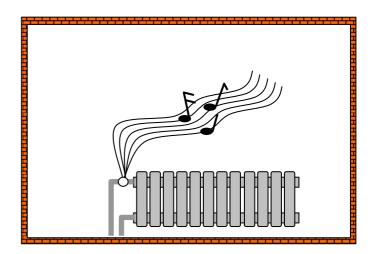
3) Hohe Rücklauftemperaturen

Zu hohe Durchflüsse an den Heizkörpern bewirken hohe Rücklauftemperaturen und damit einen verminderten Brennwertnutzen.

Warmer Rücklauf 70 °C

Kühler Rücklauf 45 °C

Folgen der "Behelfslösung" (III)


4) Unnötig hohe Pumpenleistung

Es wird mehr elektrische Energie verbraucht als notwendig wäre.

5) Geräusche in der Anlage

Durch die erhöhte Pumpenleistung treten in der Anlage lästige Strömungsgeräusche auf.

VERTEILSYSTEME IN GUT GEDÄMMTEN GEBÄUDEN

Ungedämmte Rohrleitungen und ungeregelte Wärmabgabe

Symptom

In Niedrigenergie-Mehrfamilienhäusern werden in den Innenfluren erhöhte Raumtemperaturen festgestellt.

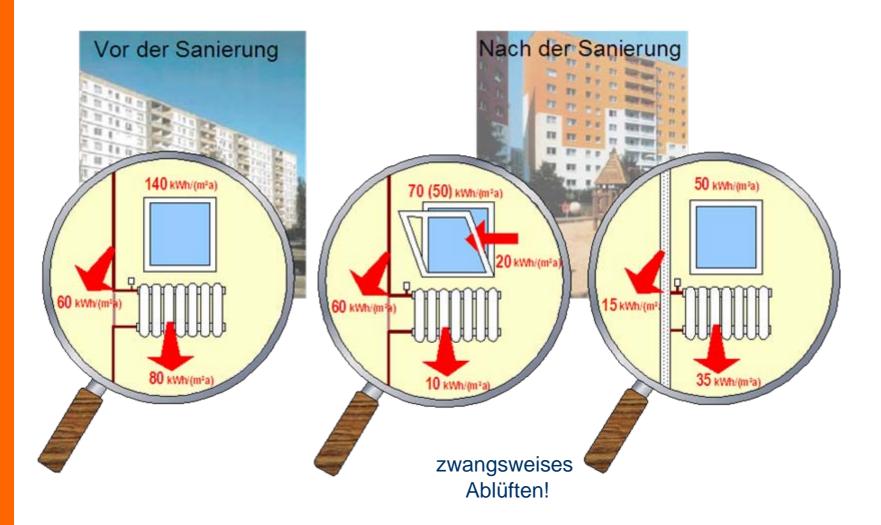
Diagnose

Erhöhte Wärmeabgabe der im Estrich verlegten ungedämmten Kunststoffleitungen für die Einzelanbindung aller Heizkörper von einem Wohnungsverteiler ("Spaghetti-Verteilung"); gleichzeitig Abfuhr der Überschusswärme über die Abluftabsaugung in den benachbarten Sanitärräumen

Einsparpotential

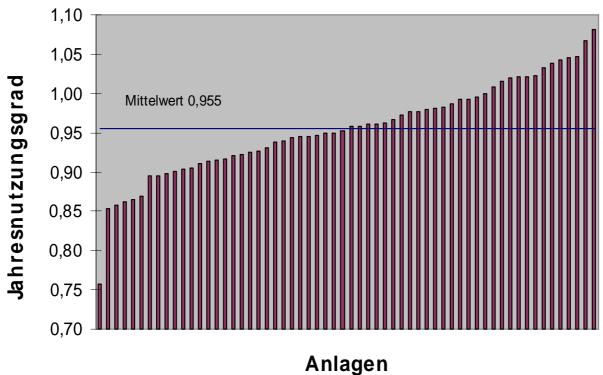
10–20 kWh/(m²a) lokal: $t_i = 24...25$ °C

Mehrverbrauch trotz guter Hülle und guter Wärmeerzeugung



11- und 14-Geschosser Einrohrheizung

Zwangswärmekonsumohne integrierte Planung und Ausführung


BRENNWERTKESSELANLAGEN

Feldversuche zeigen: verminderte Brennwertnutzung (I)

Symptom

In "unbegleiteten" Niedrigenergie-Ein- und Mehrfamilienhäusern werden im Durchschnitt nur Jahresnutzungsgrade von ca. 95 %, bezogen auf den unteren Heizwert, gemessen.

Systemdenken erforderlich!

- Der Einsatz optimaler Komponenten allein reicht nicht aus, um deren Einsparpotential zu nutzen (z.B. Brennwertkessel).
- Durch nicht angepasste Komponenten und Reglereinstellungen wird häufig Energie verschwendet.
- Die einzelnen Komponenten müssen sorgfältiger aufeinander abgestimmt werden (z.B. Hydraulischer Abgleich).

→ Das System muss als Ganzes betrachtet und optimiert werden!

OPTIMUS:

Optimierung von Heizungssystemen durch Information und Qualifikation zur nachhaltigen Nutzung von Energieeinsparpotentialen

Projektpartner

Innung Sanitär- und Heizungstechnik Wilhelmshaven

Berufsbildende Schulen II Aurich

Forschungsgruppe Praxisnahe Berufsbildung Bremen

Trainings- & Weiterbildungszentrum Wolfenbüttel e.V. Wolfenbüttel

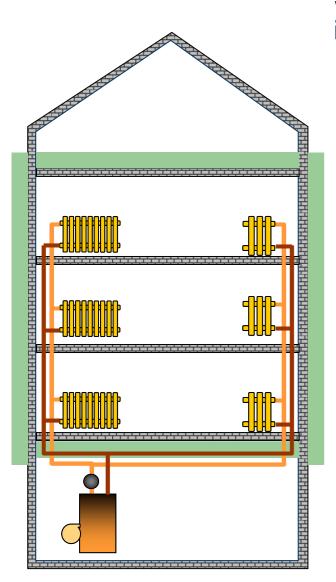
Firma WILO AG Dortmund

1. Die Einsparpotenziale durch die Optimierung bestehender Heizungsanlagen in der konkreten Praxis nachweisen.

 Die "Optimierung von Heizungsanlagen" zu einer Standardmaßnahme der energetischen Gebäudesanierung entwickeln.

Arbeitsebene 1

Projektziele - Technischer Bereich



vorhandene Technologien bestmöglich zu nutzen durch die Optimierung von bestehenden Heizungsanlagen

- Energieeinspar- und Wirtschaftlichkeitsnachweis durch Verbrauchsmessungen an konkreten Objekten
- Entwicklung von Hilfsmitteln zur Optimierung für das Fachhandwerk

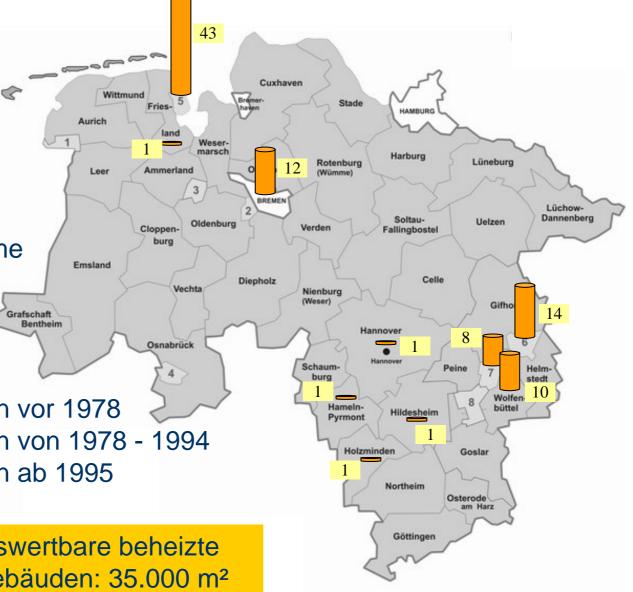
Ausgangslage

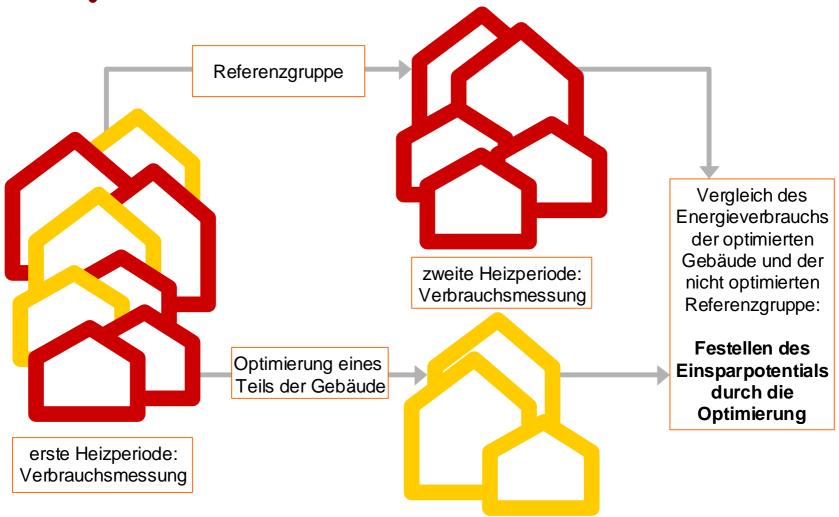
Schwerpunkt: bestehende Gebäude, insbesondere nach baulichen Sanierungen.

- altes Gebäude mit "Hochtemperatur-Heizung"
- Dämmung der Gebäudehülle (ggf. auch nur teilweise)
- Berechnung der neuen Heizlast, neuen Systemtemperatur, hydraulischer Abgleich der Heizung

OPTIMUS - Ziel:

vorhandene Technologien bestmöglich zu nutzen durch die Optimierung von bestehenden Heizungsanlagen


Gewählte Gebäude


- 59 mit Kessel
- 33 mit Fernwärme
- **52 EFH**
- **40 MFH**
- 47 mit Baujahren vor 1978
- 20 mit Baujahren von 1978 1994
- 25 mit Baujahren ab 1995

Energetisch auswertbare beheizte Fläche in 75 Gebäuden: 35.000 m²

Energieeinsparnachweis

Einsparpotentiale messtechnisch nachweisen: monatliche Erfassung des Energieverbrauchs aller Gebäude über 2 Heizperioden

Zustand der Gebäude und Anlagen

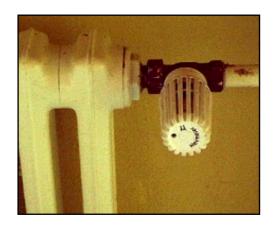
durchschnittliche Kompaktheitsgrade A/V_e

- 0,56 (MFH)
- 0,64 (EFH)

- 153 m² (EFH)
- 837 m² (MFH)

mittlere U-Werte der Gebäude

- 1,3 W/(m²K) Baujahre vor 1977
- 0,47 W/(m²K) -Baujahre ab 1995


Heizflächen und Thermostatventile

großzügige Heizkörperbemessung:

Heizkörpernormleistung effektiver Raumheizlast = etwa 1,7

- Durchflusswerte $(k_{V,S})$ der eingesetzten Ventile sind etwa 7 ... 10fach zu groß.
- Der hydraulische Abgleich ist in deutlich weniger als 10 % der Anlagen vorhanden.
- Weniger als die Hälfte der Thermostatventile sind überhaupt voreinstellbar.

Verteilsystem und Umwälzpumpen

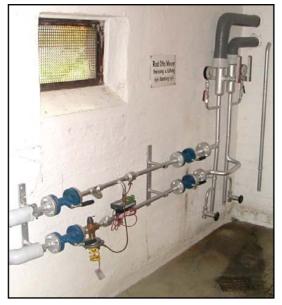
großzügige Pumpenauslegung:

<u>vorhandene elektrische Pumpenleistung</u> ausreichende el. Pumpenleistung = **etwa 3,0**

typischer Kennwert für installierte Pumpenleistung bezogen auf die beheizte Fläche: etwa 0,13 (MFH) ... 0,43 (EFH) W/m² für Heizungsumwälzpumpen

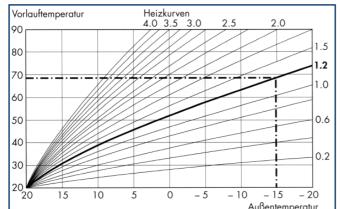
Außerhalb des beheizten Bereichs verlegt:

- etwa 0,1 m/m² Heizungsleitungen mit mäßiger bis guter Dämmung
- etwa 0,08 m/m² Trinkwarmwasserleitungen mit guter Dämmung


Erzeuger und Regelung

großzügige Wärmeerzeugerauslegung:

vorhandene Erzeugerleistung Gebäudeheizlast


= etwa 1,8

Zentrale Heizkurveneinstellung

- Heizkurvensteilheit etwa 1,6 bei allen Heizkurven 4.0 3.5 3.0 2.5 Gebäudearten, Altersklassen und Energieversorgungen,
 - Parallelverschiebung 4 K im MFH und 1 K im EFH
 - Auslegungsvorlauftemperaturen von ca. 80 °C für alle Gebäude

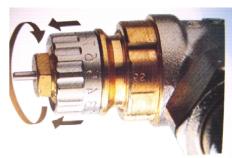
Resultat der Istzustandsaufnahme

- Überdimensionierung / Werkseinstellung der Komponenten ermöglichen ein Verschwendungspotential: möglicher Energieverbrauch ist zwei bis drei mal höher aller der minimale Jahresenergiebedarf
- fehlender hydraulischer Abgleich sowie die Heizkörper-, Pumpen- und Thermostatventilüberdimensionierung provozieren schlechtes Regelverhalten (Zweipunktverhalten des Einzelraumregelkreises)
- Anlagen weisen Geräuschprobleme und eine schlechte Wärmeverteilung auf

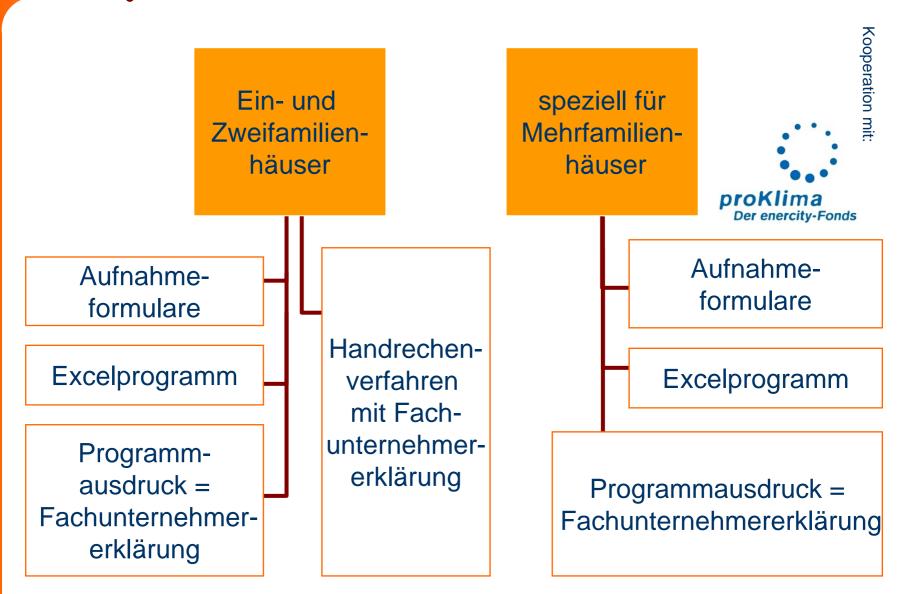
- Optimierung: Oktober 2003 bis Januar 2004
- 31 Gebäude (beheizte Fläche ca. 11.500 m²)

Optimierungsarbeiten

Die Optimierung in der Planung und Ausführung umfasst:


- den hydraulischen Abgleich mit Voreinstellung von Thermostatventilen,

- 2. die Einstellung der ausreichenden Förderhöhe an der Pumpe
- 3. die Einstellung der Vorlauftemperatur am zentralen Regler.



Optimierung
zur Verminderung
des Verschwendungspotentials für Wärme,
der elektrischen Hilfsenergie für die Pumpe und
zur Komfortverbesserung

Software für die Optimierung

Überblick: Erreichte Energieeinsparungen

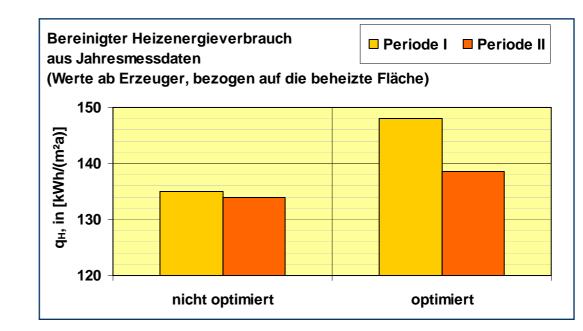
Heizwarmeersparnis:	7 kWh/(m²a)	90.000 kWh/a
Endenergieersparnis:	8 kWh/(m²a)	106.000 kWh/a

Primärenergieersparnis: 10 kWh/(m²a) 124.000 kWh/a

CO₂-Ersparnis: 2,1 kg/(m²a) 28.300 kg/a

Die erreichte Einsparung ist in den ...

- neuen Gebäuden (nach 1978) deutlich höher als in den alten Gebäuden (vor 1977)
- Gebäuden mit geringem Heizwärmeverbrauch (unter 130 kWh/m²a) deutlich höher als bei hohem Heizwärmeverbrauch (über 130 kWh/m²a)
- MFH im Mittel etwas h\u00f6her als in den EFH
- Gebäuden mit Kessel höher als in den Gebäuden mit Fernwärme


Heizenergieeinsparung

im Mittel $\Delta q_H = -8 \text{ kWh/(m}^2 \text{a})$

- mit q_h bis 130 kWh/(m²a) -12 kWh/m²a
- mit q_h ab 130 kWh/(m²a)
 -4 kWh/m²a
- bis 1977
- 1978 bis 1994
- ab 1995

- -1 kWh/m²a
- -14 kWh/m²a
- -19 kWh/m²a)

Überraschend!

Auswirkungen der Optimierung sind größer in Gebäuden mit einem baulich hohen Standard (neue Baualtersklasse bzw. geringer Heizwärmeverbrauch)

Neue Gebäude

- geringere Wärmeanforderung
- jedes zusätzliche (ungeregelte) Wärmepotential führt in diesem Gebäudetyp schnell zum Mehrverbrauch
- Optimierung beseitigt bzw. vermindert das Verschwendungspotential und führt zu größeren Einsparpotentialen.

Alte Gebäude

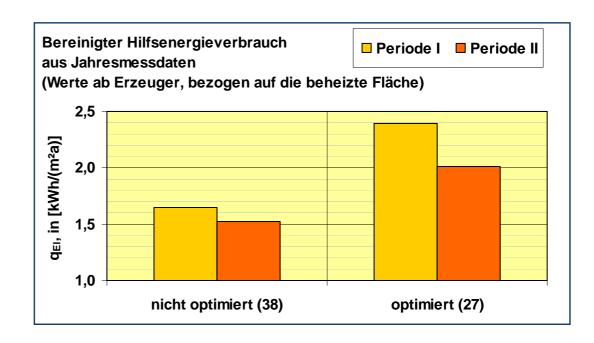
- hohe Wärmeanforderung
- Überschüsse können besser genutzt werden, auch ungeregelte
- mangelnde Qualität führt zu geringen Verschwendungspotentialen
- es ergeben sich dann auch geringere Einsparpotentiale

Hilfsenergieeinsparung

im Mittel $\Delta q_{FI} = -0.3 \text{ kWh/(m}^2\text{a})$

• bis 1977

-0,1 kWh/m²a


• 1978 bis 1994

-0,6 kWh/m²a

ab 1995

-0,1 kWh/m²a)

Die Einsparung an Primärenergie ist drei mal so hoch!

Sondermaßnahme: Optimierung mit Pumpentausch OPT

In acht Etagenwohnungen eines MFH wurden – auf Vorschlag des Projektantragstellers Dipl.-Ing. Stein – im Zuge der Optimierung die im Kessel integrierten, ungeregelten Pumpen durch geregelte ersetzt.

- Heizwärmeersparnis
 28 kWh/(m²a) bzw.
 21 % von 132 kWh/(m²a)
- Hilfsenergieersparnis
 1,4 kWh/(m²a)
 bzw. 18 % von 7,6 kWh/(m²a)

Einzelbetrachtung: neues MFH in Braunschweig

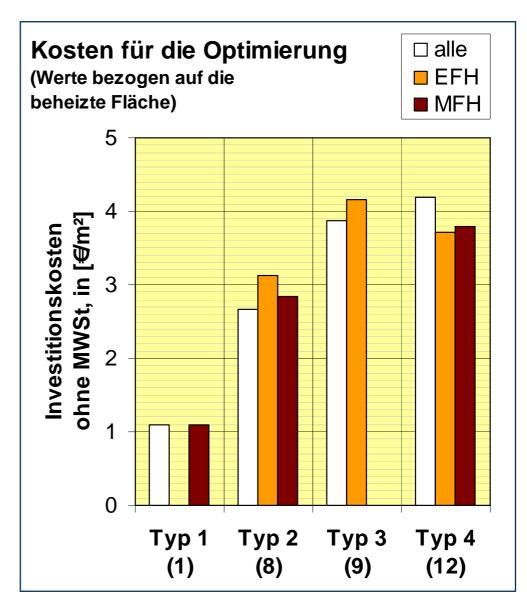
Mehrfamilienhaus mit 18 Wohneinheiten, Baujahr 1998, 1250 m² Wohnfläche

Optimierungsmaßnahmen ohne Investitionen in Komponenten:

- Voreinstellung der Thermostatventile
- Einstellung der optimalen Pumpenförderhöhe
- Optimale Einstellung der Regelung

Verringerung des Verbrauchs thermischer Energie durch Optimierung von 99 kWh/(m²a) auf 78 kWh/(m²a)

Das entspricht einer prozentualen Verringerung von 21 %


Kosten für die Optimierung

Maßnahmenpaket / Typ:

- nur Komponenten einstellen
- voreinstellbare Thermostatventile einbauen
- neue Pumpe / neuen Differenzdruckregler einbauen
- 4. Pumpe /
 Differenzdruckregler
 und THKV einbauen

im Mittel der Optimus-Gebäude: 3,7 €m²

Wirtschaftlichkeit der Optimierung

SOLL

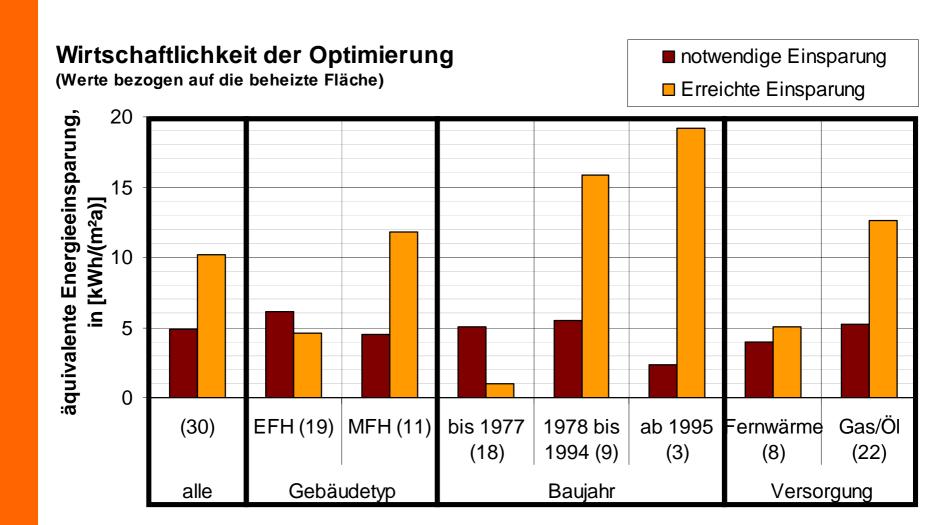
Investition: 42.000 €

- jährliche Kapitalkosten (15 Jahre, Zins 5%/a) ca. 4200 €/a
- jährliche Wartungskosten (Schmutzfilter)
 ca. 200 €/a.

notwendige Ersparnis für Wirtschaftlichkeit:

- entweder 58.000 kWh/a (thermische Energie)
- oder 19.000 kWh/a (el. Hilfsenergie)

IST


Erreichte Einsparung

- 106.000 kWh (thermische Energie)
- und 3.700 kWh/a
 (el. Hilfsenergie)
- äquivalente Energie:
 117.000 kWh/a
 (Strom mit 3,0 umgerechnet)

Projektziel erreicht!

Wirtschaftlichkeit der Optimierung

Optimierungsempfehlungen

Bewertung anhand Energieeinsparung sowie Wirtschaftlichkeit.

	EFH		MFH	
	mit Kessel	mit Fernwärme	mit Kessel	mit Fernwärme
Baujahr bis 1977 – nicht baulich modernisiert	0	0	0	0
Baujahr bis 1977 – größtenteils baulich modernisiert	+	+	++	+
Baujahr 1978 bis 1994	+	+	++	+
Baujahr ab 1995	++	++	++	++

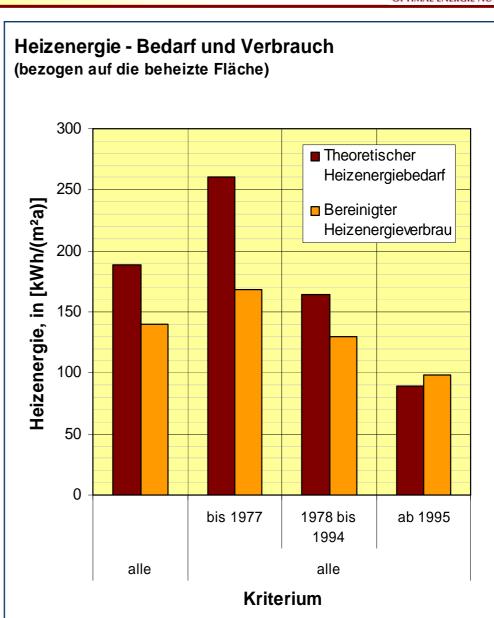
- Uneingeschränkte Empfehlung: Gebäude mit Baujahren ab 1978
- Gebäude mit Baujahren vor 1977: vorwiegend MFH und Gebäude mit Kesseln (größere Einsparungen zu erwarten)
 - möglichst wenn ohnehin Investitionen in die Anlage / Baukörpermodernisierung notwendig sind
 - oder wenn einstellbare Komponenten vorhanden sind

Heizenergie - Bedarf und Verbrauch

Theorie:

 Faktor 3,0 zwischen alten und neuen Gebäuden

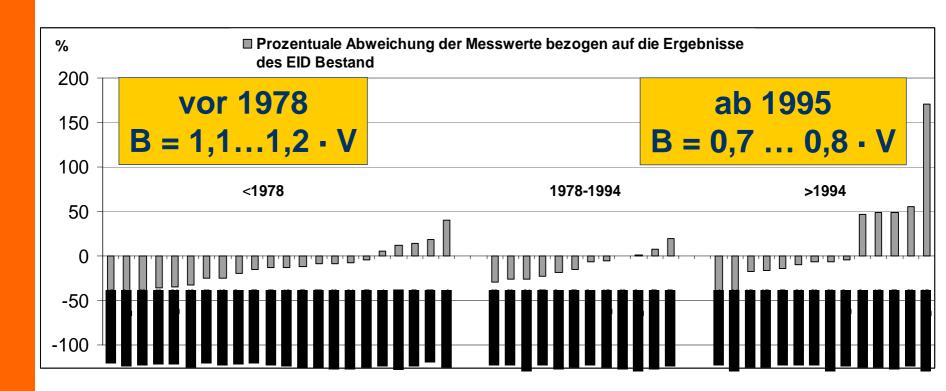
Praxis:


 Faktor 1,5 zwischen alten und neuen Gebäuden

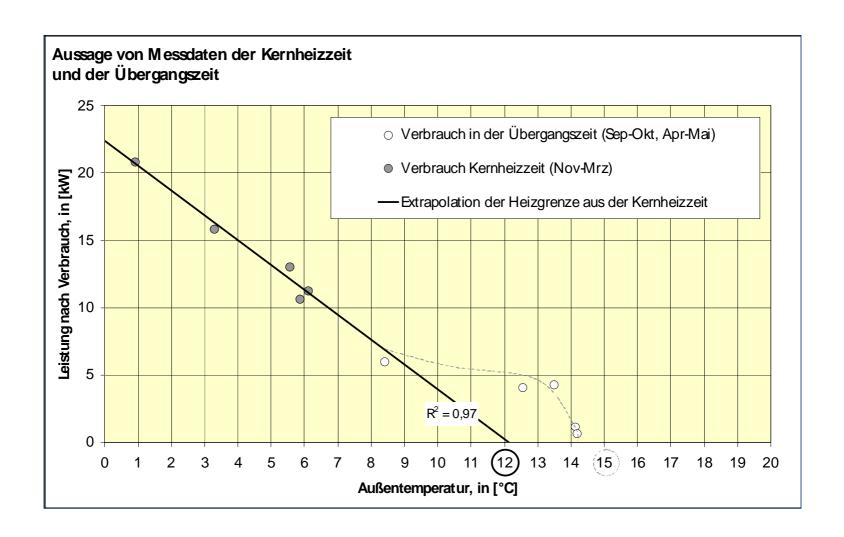
Abgleich:

- alte Gebäude 35 % mehr berechneter Bedarf
- neue Gebäude 10 % weniger Bedarf

Konsequenz:


 zu hohe theoretische Einsparprognose

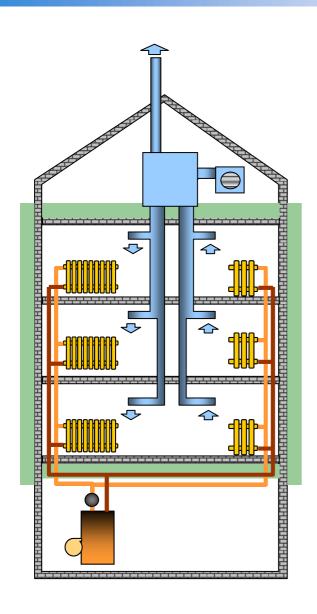
Vergleich Bedarf und Verbrauch nach DENA



Wenn die aus Bedarfsrechnungen ermittelte Einsparung größer ist als der derzeitige Verbrauch sollte man aufhorchen!

Energieanalyse aus dem Verbrauch

TEIL 2: ANLAGENOPTIMIERUNG


Optimierung von:

- Wärmeerzeugung (Art, Leistung)
- Wärmeverteilung (Dämmung, Leitungslängen)
- Regelung und Hydraulik (Vermeidung eines Verschwendungspotentials)

Maßnahmen zur Optimierung der Hydraulik:

- 1. Berechnung der Raumheizlast und der benötigten Vorlauftemperatur
- 2. Berechnung der Druckverluste im Rohrnetz
- 3. Auslegung der Umwälzpumpe
- 4. Auswahl und Voreinstellung der Thermostatventile
- 5. Anpassung der Heizungsregelung

Optimierungsbedarf

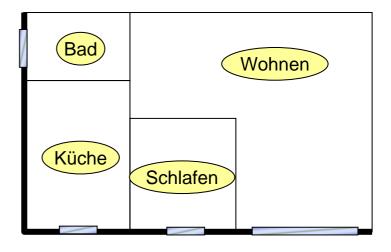


Schwerpunkt: bestehende Gebäude, insbesondere nach baulichen Sanierungen

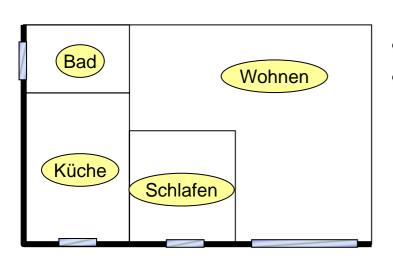
- 1. altes Gebäude mit "Hochtemperatur-Heizung"
- 2. Dämmung der Gebäudehülle (ggf. auch nur teilweise)
- 3. neue Heizlast, neue Systemtemperatur, Hydraulischer Abgleich Heizung
- 4. Einbau einer Lüftungsanlage
- neue Heizlast, neue Systemtemperatur, erneuter Hydraulischer Abgleich der Heizung, Abgleich der Lüftung

Beispiel: Etagenwohnung

- Etagenwohnung
- 2 Zimmer, Küche, Bad
- 60 m² beheizte Fläche

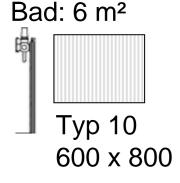

Bad: 6 m²

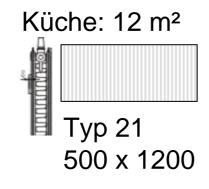
Küche: 12 m²

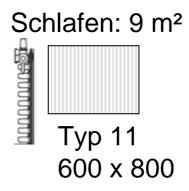

Schlafen: 9 m²

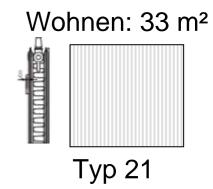
Wohnen: 33 m²

- Wandtherme mit integrierter Pumpe (und Überströmventil)
- Vorlauftemperatur 75 °C
- nicht voreinstellbare Heizkörperventile
- Gebäude letztes Jahr baulich gut saniert

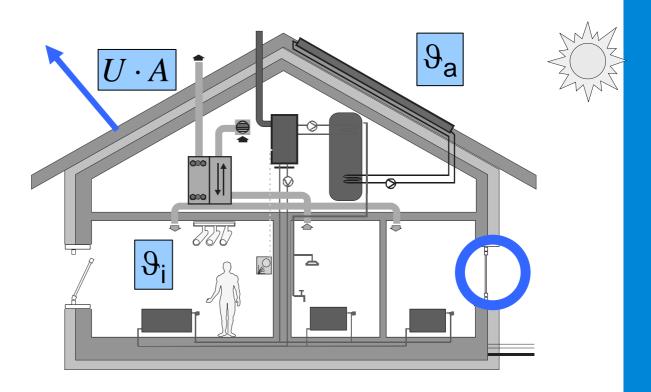



Geschätzter Hydraulischer Abgleich nach Thermostatventiltausch

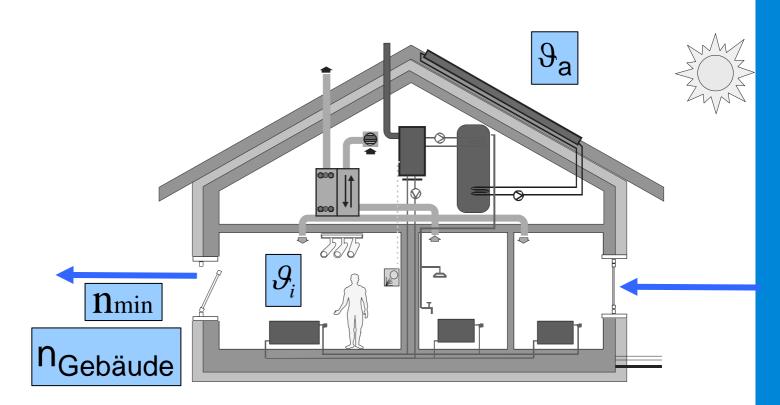



- Haus ist gut wärmegedämmt mit neuen Fenstern
- Plattenheizkörper (s. u.)
- neue voreinstellbare
 Thermostatventile mit Stufen 1 6

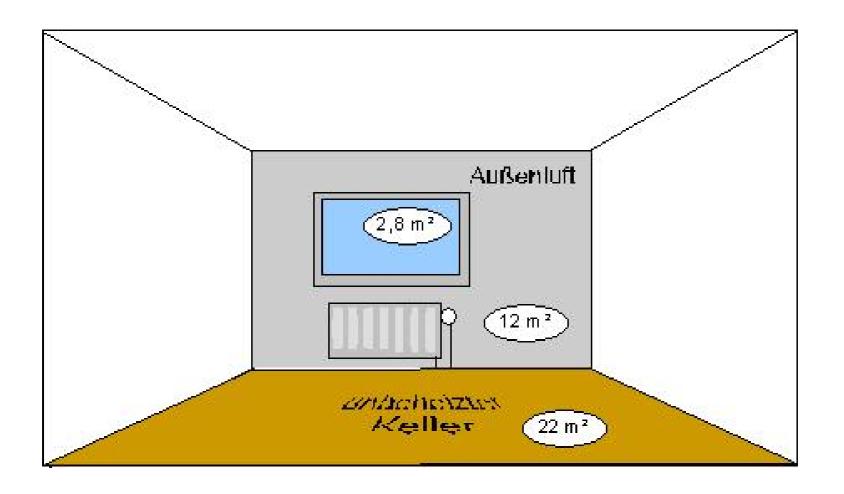
Welche Vorlauftemperatur? Welche Voreinstellungen?



900 x 1000

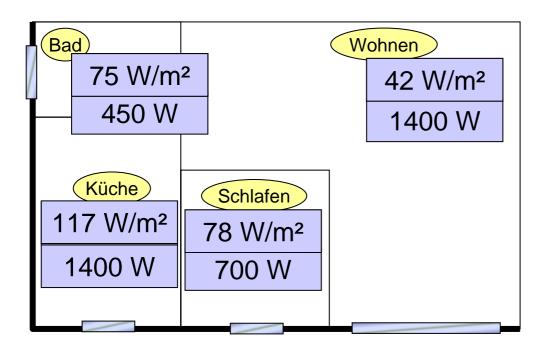

Berechnung der Heizlast - Transmission

$$\left| \dot{Q}_T = U \cdot A \cdot (\partial_i - \partial_a) \right|$$



Berechnung der Heizlast - Lüftung

$$\dot{Q}_{V} = n \cdot \rho \cdot c_{p} \cdot V_{L} \cdot (\theta_{i} - \theta_{a})$$


Berechnung der Heizlast

Alte Heizlast

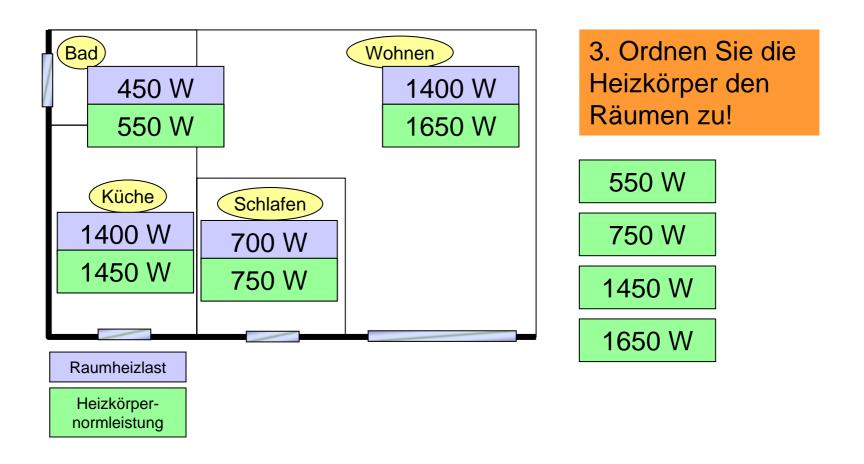
alte U-Werte: Wände 1,5 W/(m²K) Fenster 2,8 W/(m²K) 1. Schätzen Sie die mittlere Heizlast!

66 W/m²

2. Ordnen Sie die Heizlasten den Räumen zu!

117 W/m²

78 W/m²


75 W/m²

42 W/m²

Raumheizlast

Ausstattung mit Heizkörpern

- aufgenommen wurden alle 4 Heizkörper mit Hilfe eines Tabellenbuchs
 - dokumentiert wurde die Normheizkörperleistung bei 75/65/20 °C

Neue Heizlast

neue U-Werte: Wände 0,3 W/(m²K) Fenster 1,3 W/(m²K)

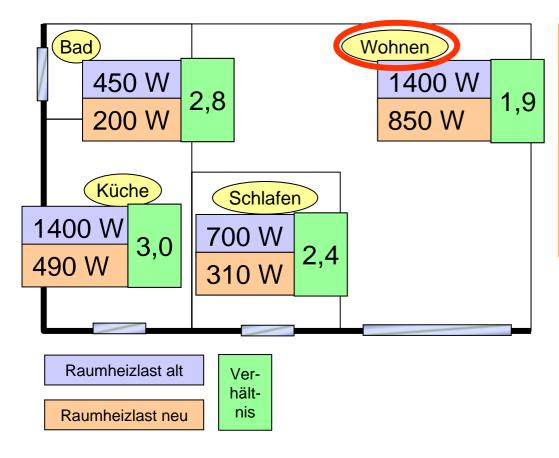
Bad Wohnen 450 W 1400 W auf 44 % auf 61 % (Küche) Schlafen 1400 W 700 W auf 35 % auf 44 % Raumheizlast alt Raumheizlast neu

4. Schätzen Sie die mittlere Heizlast!

31 W/m²

5. Ordnen Sie zu: wie stark ist die Heizlast in den einzelnen Räumen gesunken?

auf 35 %

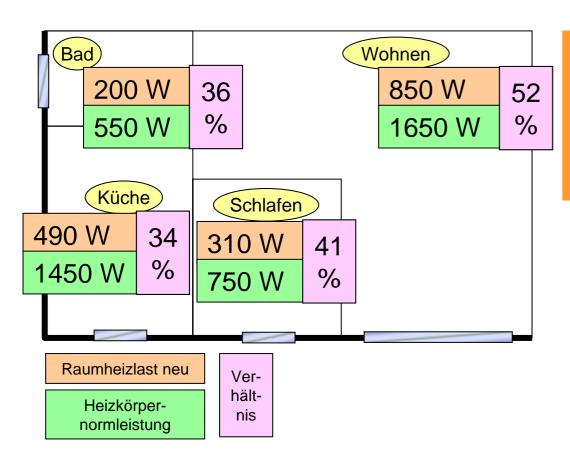

auf 44 %

auf 44 %

auf 61 %

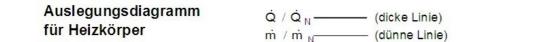
Verhältnisse nach der Modernisierung

- in den einzelnen Räumen sind die Heizkörper nun zu groß
- die Vorlauftemperatur kann abgesenkt werden, aber wie weit?

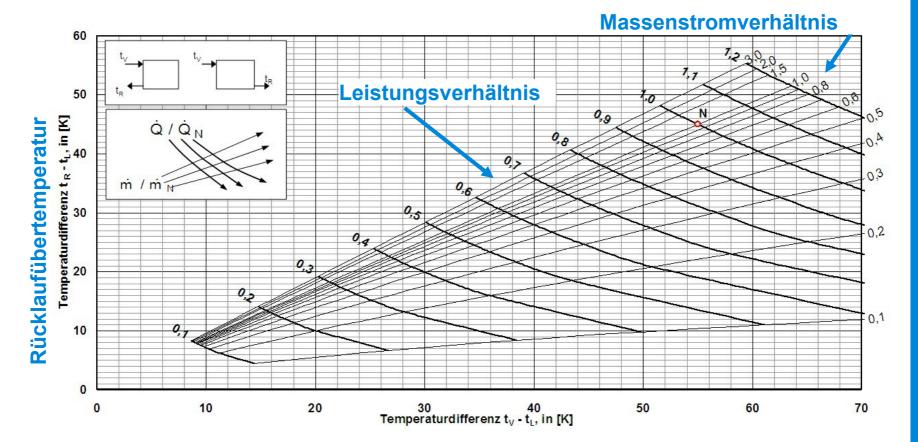

6. Welche Verhältnisse von alter und neuer Raumheizlast liegen vor?

Welcher Raum bestimmt die neue Vorlauftemperatur?

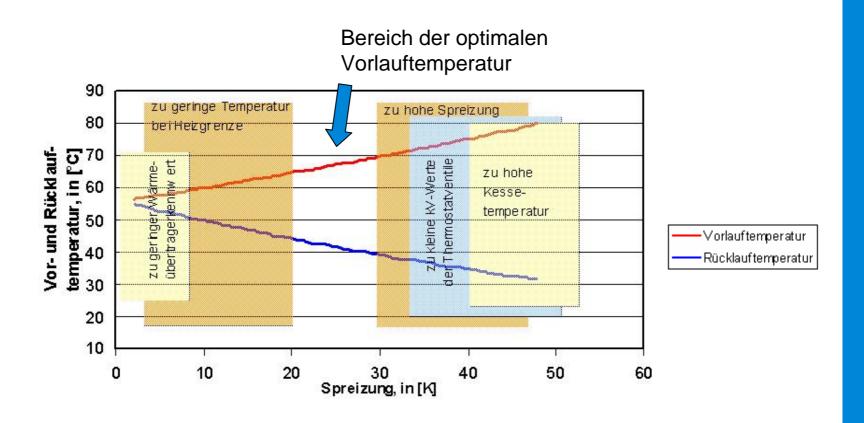
Ermittlung der neuen Temperatur


es werden gebraucht:

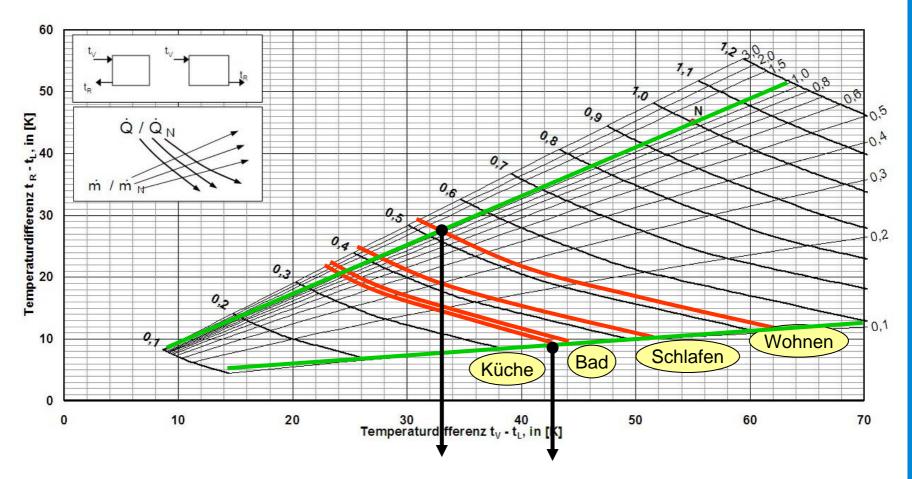
- die neue Raumheizlast
- die installierte Heizkörperleistung bei Normbedingungen


7. Wieviel Prozent der vorhandenen Normheiz-körperleistung wird in den einzelnen Räumen gebraucht?

Heizkörperdiagramm


Heizkörperexponent n: 1,3

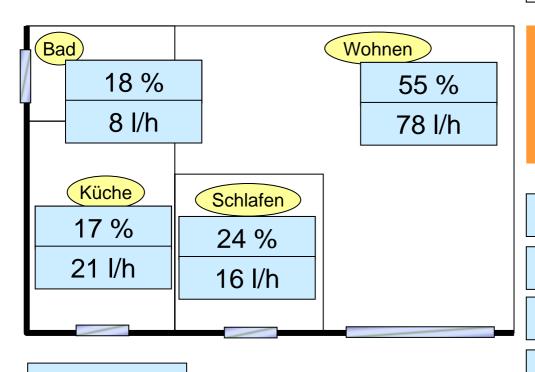
Normauslegung: 75 / 65 / 20 °C



Vorlaufübertemperatur

Ermittlung der neuen Temperatur

Ermittlung der neuen Temperatur



mindestens 53 °C, damit es im Wohnzimmer warm wird, aber nicht mehr als 62 °C, damit in der Küche die Volumenströme nicht zu klein werden.

16

Ermittlung der Volumenströme

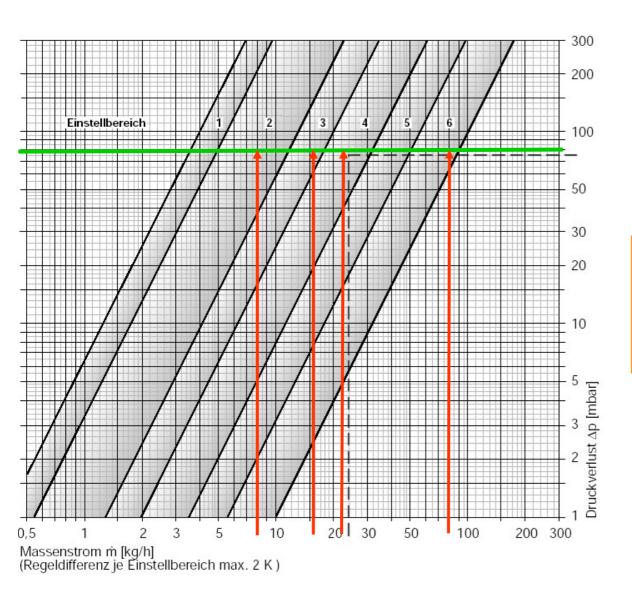
der Volumenstrom bei ursprünglicher Auslegung betrug etwa 230 l/h.

8. Schätzen Sie den Gesamtvolumenstrom!

123 l/h

9. Wieviel Prozent des Normvolumenstroms wird in den einzelnen Räumen gebraucht?

17 % von 125 l/h


18 % von 47 l/h

24 % von 65 l/h

55 % von 142 l/h

Volumenstrom neu

Thermostatventileinstellung

- eingesetzt werden feinst-einstellbare Ventile
- Druckabfall am Ventil etwa80 mbar

12. Welche Voreinstellung wird in den einzelnen Räumen eingestellt?



VE 3

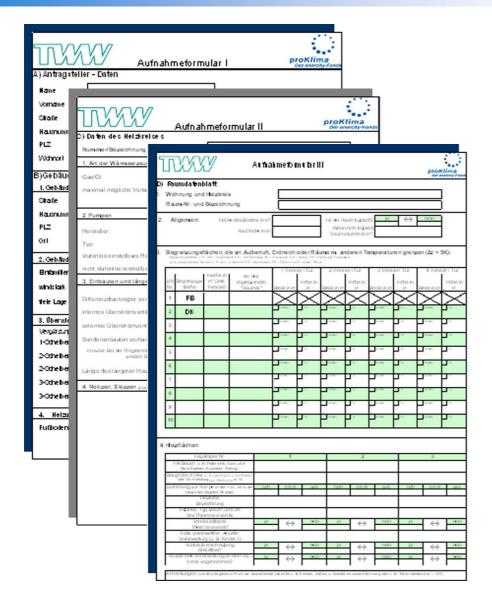
VE 6

1) Rohrnetzberechnungsprogramme

Beschreibung

- Der hydraulische Abgleich wird in Form einer ingenieurmäßigen Berechnung nach den Regeln der Technik ermittelt.
- d.h. detaillierte Aufnahme von Wandaufbauten, Leitungslängen, Leitungsdimensionen, ... ist zwingend erforderlich

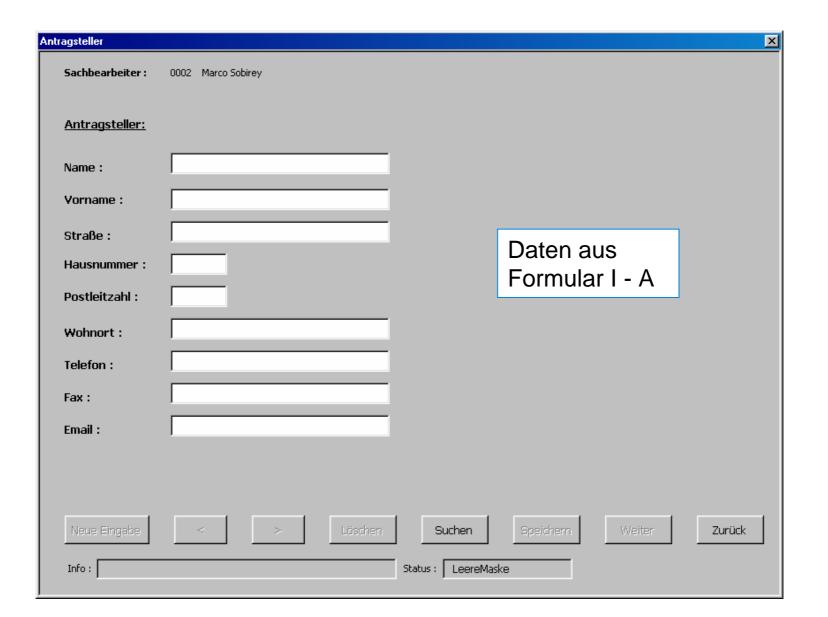
Einschränkungen

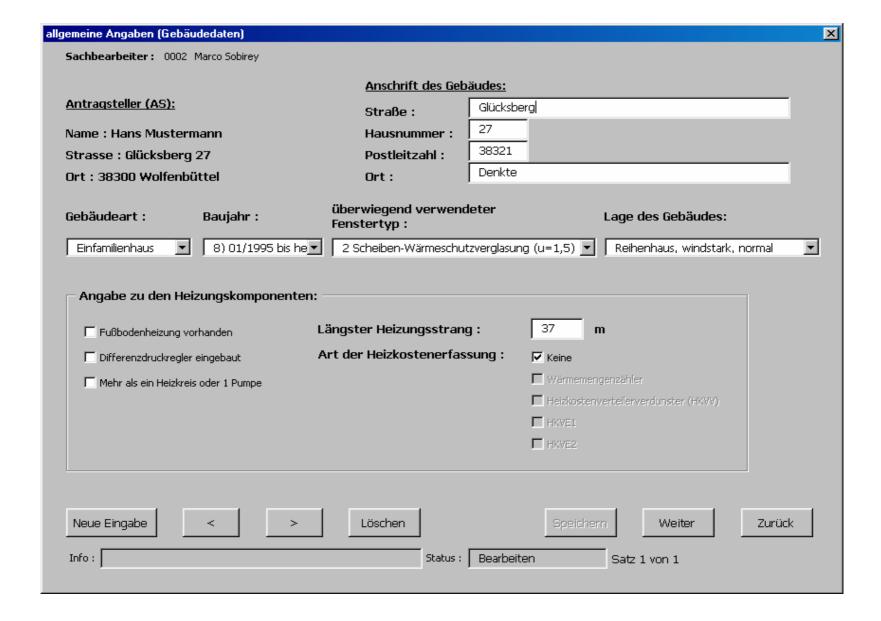

- Wandaufbauten nicht nachvollziehbar, Rohrnetz in Estrich und Schächten
- wichtige Größen zur Berechnung nicht ermittelbar

→ in bestehenden Anlagen ungeeignet

2) OPTIMUS-Software

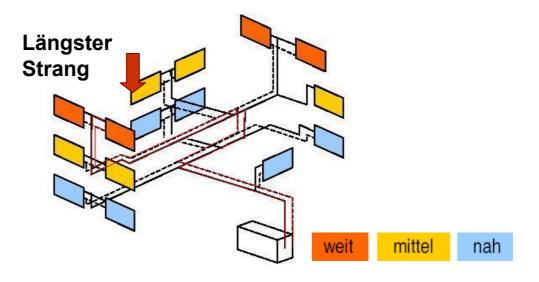
- Datenaufnahme vor Ort
- Ermittlung der optimalen Einstellungen der einzelnen Anlagenkomponenten mit der Software
- Einstellung der Anlagenkomponenten vor Ort

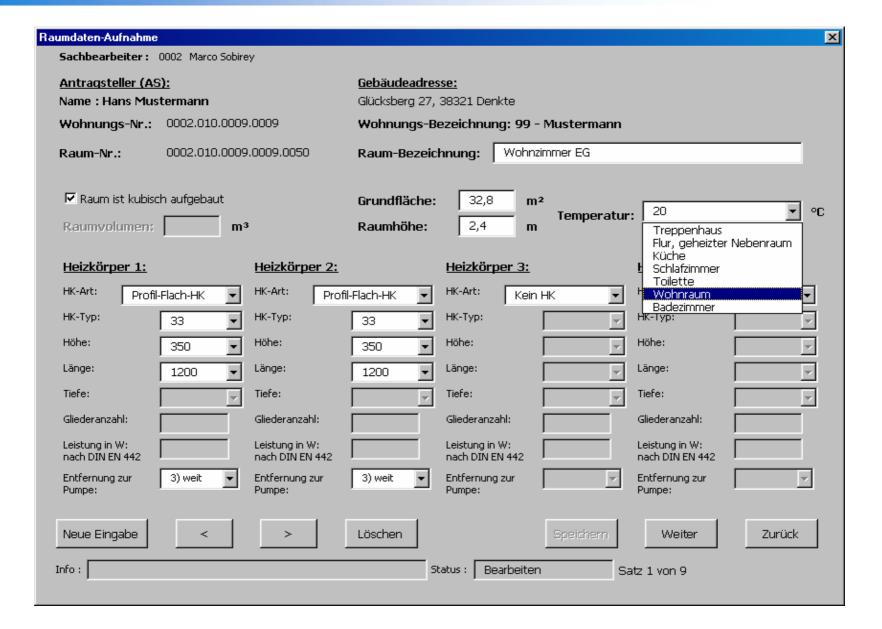

Aufnahmeformulare der OPTIMUS Software


Die zur Berechnung mit dem Programm benötigten Ausgangsdaten können mit Hilfe von Aufnahmeformularen vor Ort aufgenommen werden.

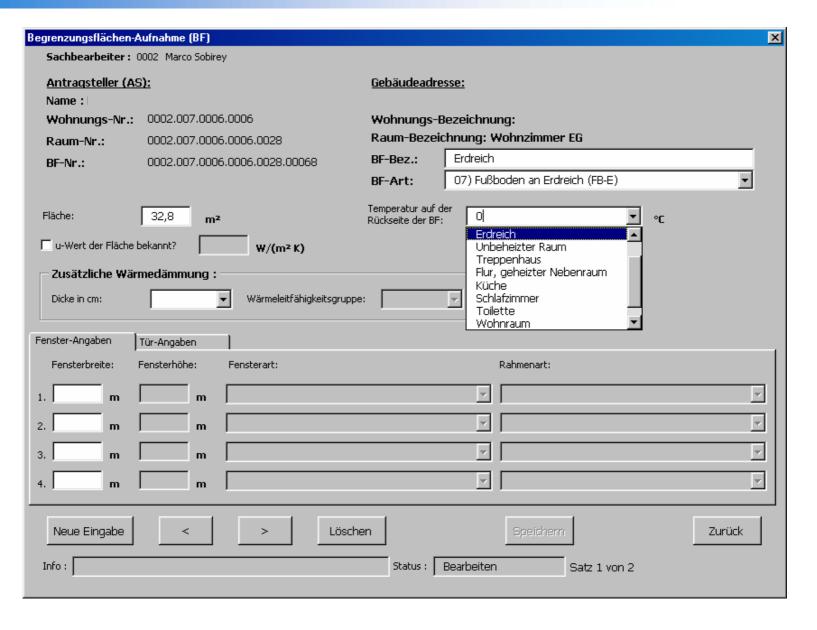
ARBEIT MIT DEM PROGRAMM

Antragsteller

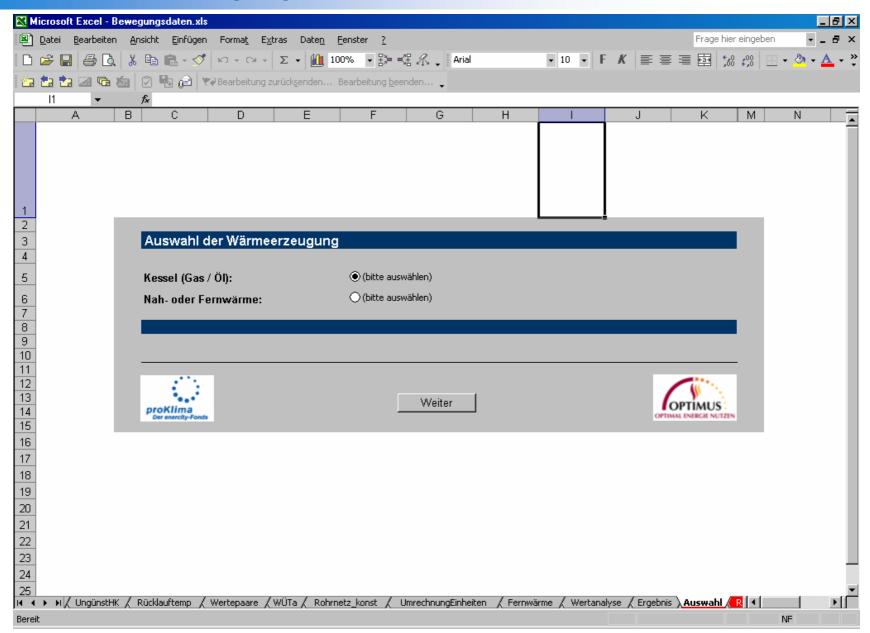

Gebäudedaten

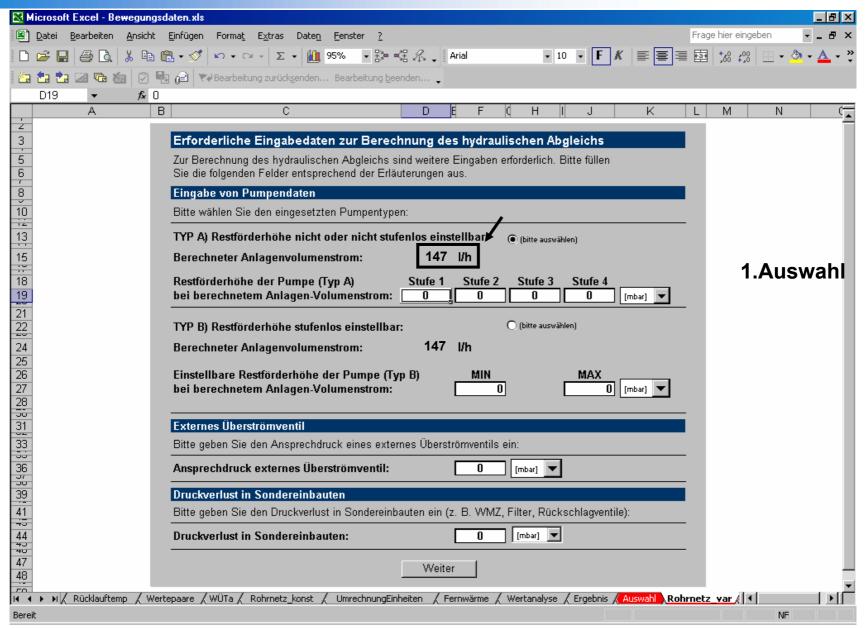

Berücksichtigung der Druckverluste

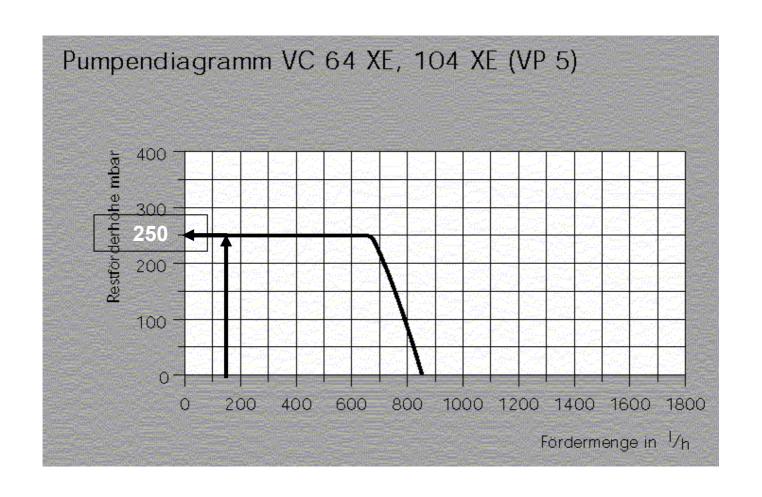
- die Länge des längsten Strangs des Rohrnetzes und die Entfernung der einzelnen Heizkörper zur Pumpe (weit, mittel, nah) bei größeren Gebäuden
- Aufnahme von Sondereinbauten (z. B. WÜT, Filter) für die Abschätzung der Druckverluste
- Fabrikat und Typ der Pumpe und Einstellbereiche sonstiger Einbauten wie z. B. Differenzdruckregler

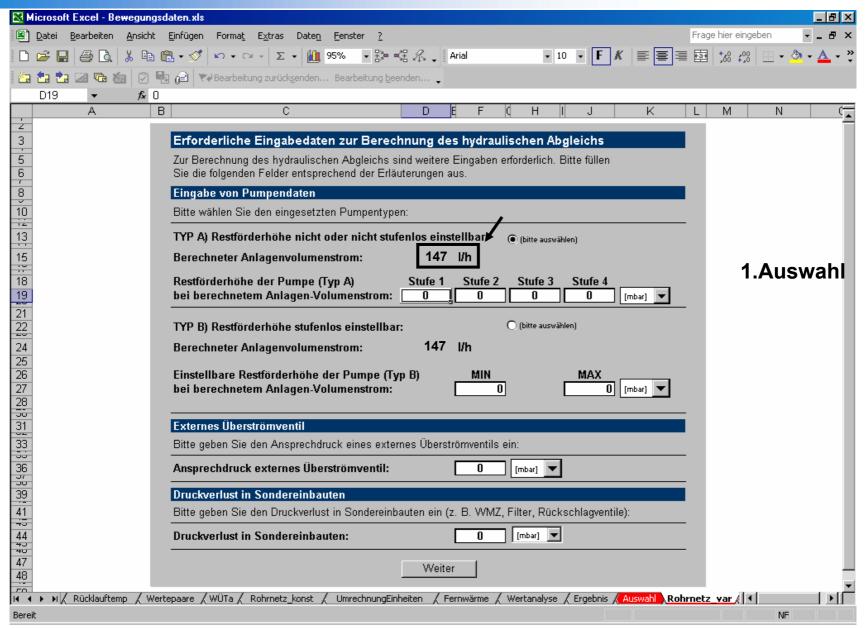

Diese Daten aufzunehmen erfordert eine Begehung der Heizzentrale.

Raumdaten


Begrenzungsflächen


Vorlauftemperatur

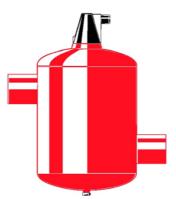

Wärmeerzeugung


Restförderhöhe und Sondereinbauten eingeben

Restförderhöhe – aus Herstellerunterlagen

Restförderhöhe und Sondereinbauten eingeben

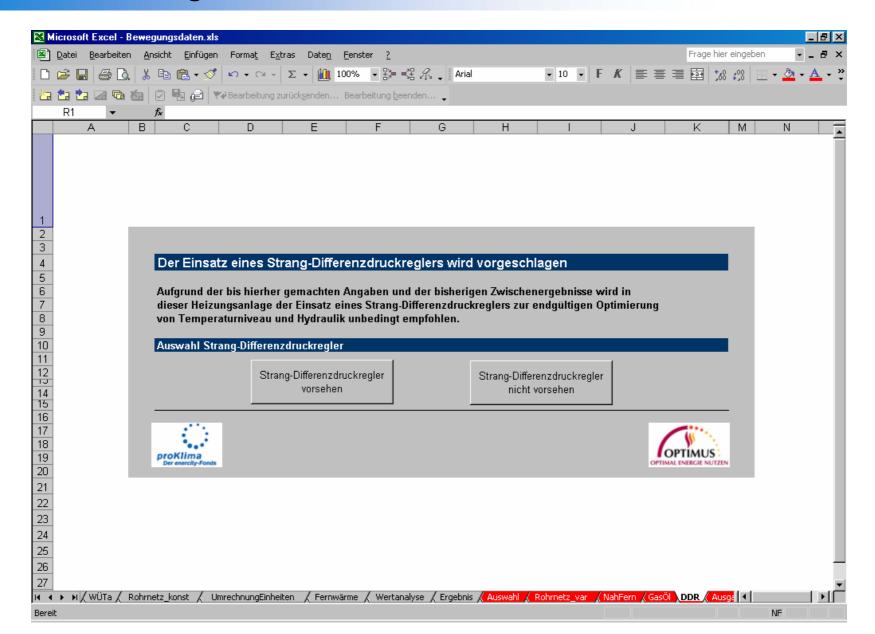
Druckverlust in Sondereinbauten


Schmutzfänger

Luftabscheider /

-sammler

Schwerkraftbremsen



Rotguss-Schmutzfänger mit Schweißtüllen DN 15 bis 32

Flamcovent Absorptions-Luftabscheider

Sperrventil "Flowstop" DN 25, 32

Vorschläge

Ergebnisbogen (I)

Ergebnisausdruck (allgemeine Daten) des Programms

Der Bogen wird ausgedruckt.

Ergebnis dei	optimierten Hydra	aulik	Programm-Version 3.3					
Sachbearbeiter			Antragsteller					
Nummer : 3			Name : Mustermann, Hans					
Name : Timm, 7	obias		Gebäude Straße: proKlima-Straße 2					
Straße :								
			PLZ, Ort : 30169 Hannover					
			Strang :					
	Gebäudeheizlast		2.) Optimiertes Temperaturniveau des Gesamtsystems					
Gebäudekenndater	,		Temperaturen für den Auslegungsfall:					
Baualtersklasse	: 8) 01/1995 b	is heute						
Grundfläche	: 148 m²		Vorlauftemperatur : 62 °C> Am Regler eingestellte Heizkurve:					
Heizlast	: 5 kW		Rücklauftemperatur : 38 °C Steilheit:					
spez. Heizlast	: 35 W/m²		Parallelverschiebung:					
3.) Optimierte P	umpeneinstellung		4.) Differenzdruckregler					
Pumpendaten:			Hinweis / einzustellende Reglerwerte:					
Pumpentyp	: Nicht stufenlos einstell	lbare Restförderhöhe						
Pumpenstufe	: Stufe 1		eingesetzt.					
Restförderhöhe	: 250 mbar (e	entspricht 2,50 m)						
Volumenstrom	: 187 l/h		Einstellwert: 50 ba					
5.) Sonstiges	Δp(sonder): 0 ml	bar Ansprechwert ext. Ü-Ventil:	0 mbar Längster Strang: 37,0 m Kennw. HK-Dim.: 46% 2,5					
	Der hydraulische Abgleic	ch wurde für eine nicht-einheitliche	HK-Dimensionierung berechnet.					

Ergebnisbogen (II)

Ergebnisausdruck (Raumdaten und Ventile) des Programms

Der Bogen wird ausgedruckt.

6.) Einstellwerte der Thermostatventile

Raumdaten			Heizkörperdaten				THKVs - Ermittlung der Voreinstellwerte					
lfd. Nr.	Raumbezeichnung	beheizte Fläche m²	Raum- Heizlast W	Heizkörpertyp	t _R ℃	Norm- Leistung 75/65°C		k _v - Wert m³/h	∆p mbar	Durch- fluss l/h	Gew ähltes Ventil: Hersteller, Typ, DN	Gew ählte Voreinstellung, Bemerkungen
1	1) Wohnzimmer EG.	32,8	743	Profil-Flach-HK 33/350/1200	33	1879	2,5	0,11	39	22		
2	1) Wohnzimmer EG.	32,8	743	Profil-Flach-HK 33/350/1200	33	1879	2,5	0,11	39	22		
3	2) Flur EG.	23,5	691	Profil-Flach-HK 22/600/700	45	1186	1,7	0,18	39	35		
4	3) Küche EG.	11,2	442	Profil-Flach-HK 22/600/400	50	678	1,5	0,16	39	32		
5	4) WC EG.	1,5	130	Profil-Flach-HK 11/600/400	29	377	2,9	0,02	39	3		kv-Wert zu klein! Spreizung > 30 K!
6	5) Schlafzimmer DG.	16,6	535	Profil-Flach-HK 22/600/1000	28	1694	3,2	0,07	43	13		Spreizung > 30 K!
7	6) Kinderzimmer DG.	19,7	451	Profil-Flach-HK 22/350/1200	29	1322	2,9	0,06	43	12		Spreizung > 30 K!
8	7) Kinderzimmer 2 DG.	9,8	398	Profil-Flach-HK 22/350/1200	27	1322	3,3	0,05	43	10		Spreizung > 30 K!
9	8) Bad DG.	6,4	482	Anderer Typ	38	1000	2,1	0,08	46	17		
10	9) Büro DG.	26,4	546	Profil-Flach-HK 22/350/1000	39	1102	2,0	0,09	46	20		

NACH DER OPTIMIERUNG - PRAXISERFAHRUNGEN

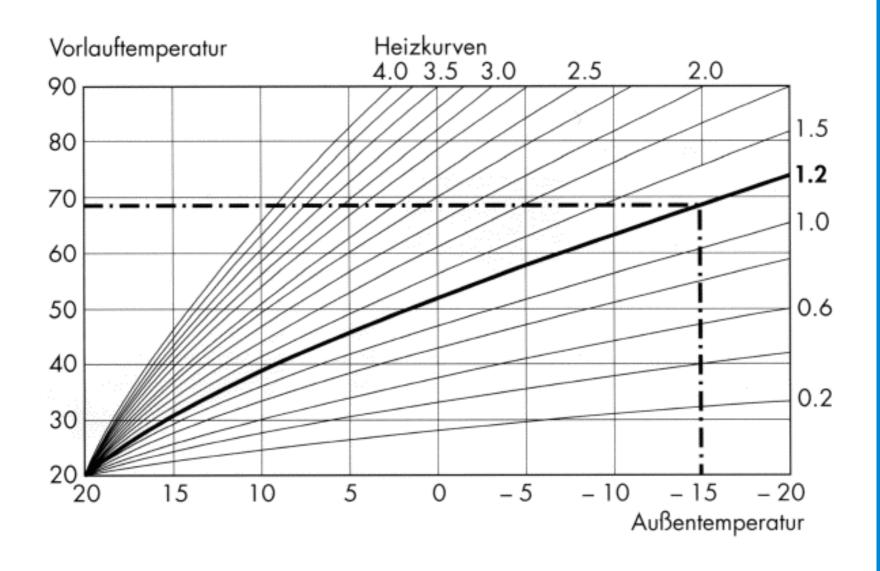
Problem: zu geringe Heizleistung (I)

Hinterfragung:

- Ist die abgegebene Leistung wirklich zu gering oder wird sie vom Nutzer als zu gering empfunden?
 - Heizkörper fühlen sich kälter an als vorher (niedrige Vorlauftemp.)
 - Strahlungsverhalten der Heizkörper hat abgenommen
 - Heizkörper werden nicht mehr komplett warm

Trotzdem gemessene Raumtemperatur 22 °C

Problem: zu geringe Heizleistung (II)


- Lüftungsverhalten der Bewohner
 - erhöhter Lüftungswärmebedarf durch ständige Kipplüftung kann vom Heizkörper nicht mehr abgedeckt werden
- Wärmeempfinden der Bewohner
 - Programm rechnet mit mittleren Innentemperaturen von 20 °C, sind die Bewohner mehr gewohnt, gibt es unter Umständen Probleme.

Problem: zu geringe Heizleistung (III)

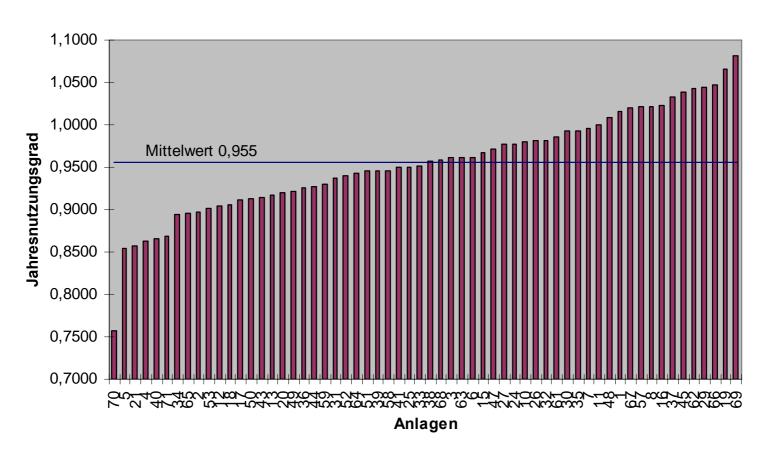
Lösungsmöglichkeiten:

- Überprüfung der Berechnung (stimmen Eingabegrößen?) und ggf. Korrektur
- Hinweise zum korrekten Lüftungsverhalten geben
- Änderung Parallelverschiebung (Raumtemperatur) der Heizkurve

Heizkurve – Steilheit und Parallelverschiebung

Wandtherme oder Standkessel?

Wandtherme


Standkessel

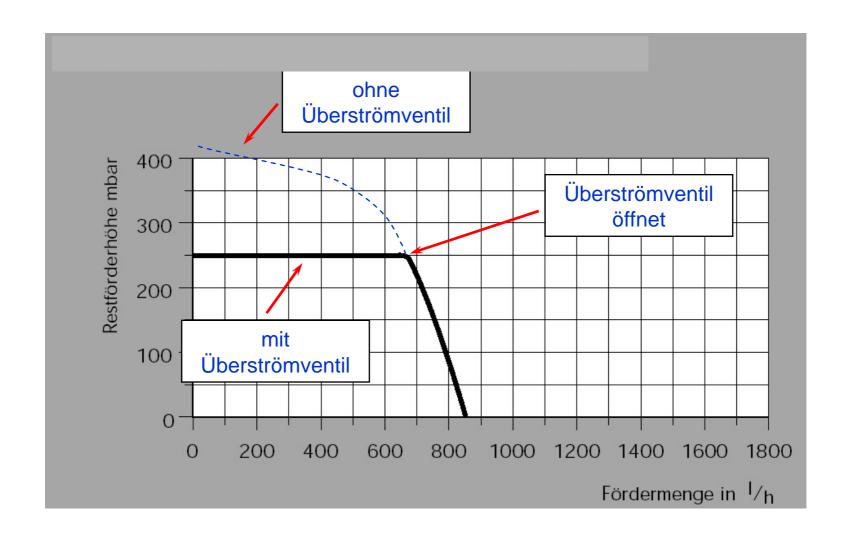
Feldversuche zeigen: Verminderte Brennwertnutzung in NEHern (1)

SYMPTOM

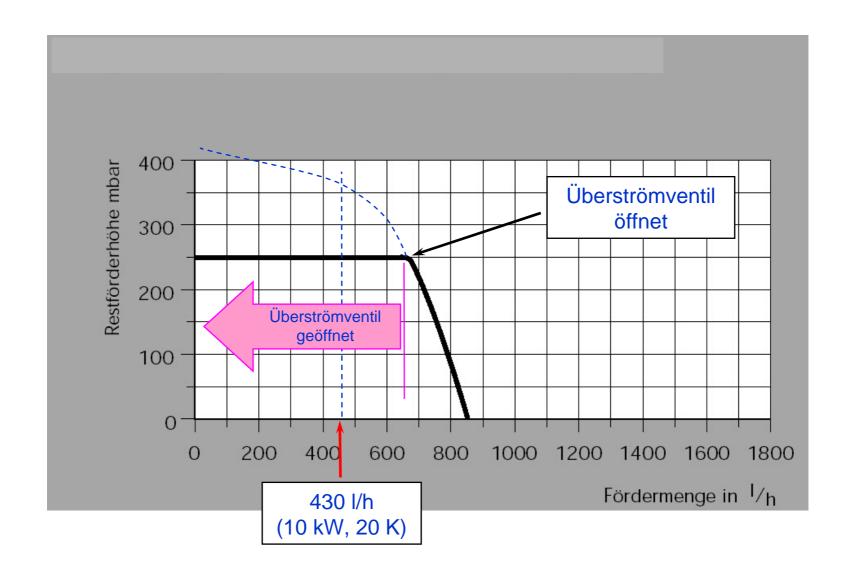
In "unbegleiteten" Niedrigenergie-Ein- und Mehrfamilienhäusern werden im Durchschnitt nur Jahresnutzungsgrade von ca. 95% bezogen auf den unteren Heizwert gemessen.

Brennerleistung

- Die maximale Brennerleistung sollte möglichst genau so groß sein wie die Gebäudeheizlast.
 - Bei einer zu hohen Brennerleistung wird der Kessel zum Ein-/ Ausbetrieb (Takten) gezwungen. Dadurch entstehen erhöhte Emissionen und unnötige Verluste (Vorspülen). Ebenfalls erhöht sich der Verschleiß.


• Mittlere Kesselbelastung: $\beta = 0.09$

(1,8 kW bei 20 kW Kesselleistung)


- Kesselnutzungsgrade
 - ohne Überströmventil
 - mit Überströmventil

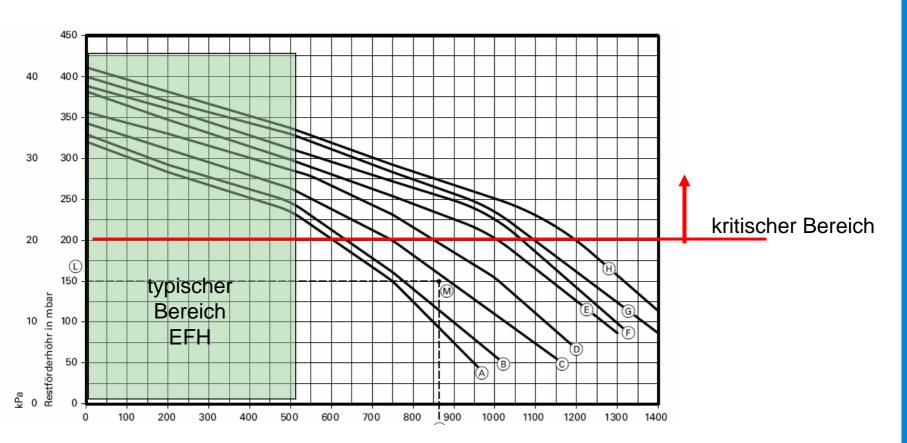
- η (Hs) = 88 %
- η (Hs) = 83 %

Problem: Überströmventil (I)

Problem: Überströmventil (III)

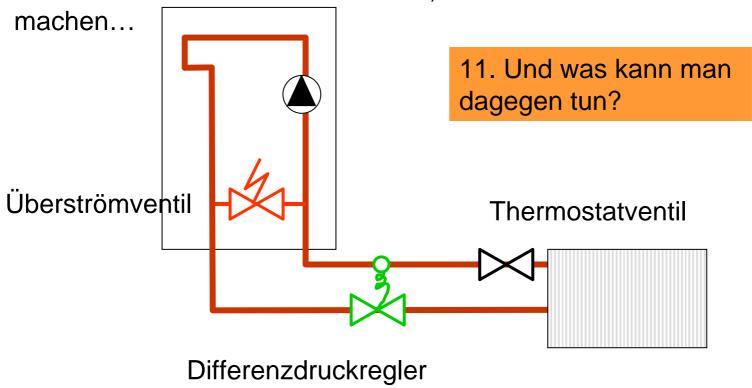
Problem: Überströmventil (II)

- Ein beispielhaft ausgewähltes Wandgerät besitzt eine maximale Leistung von 10 kW.
- Die Auslegungs-Systemspreizung soll 20 K betragen


Kennwert für benötigten Volumenstrom: 43 l/h je 1 kW bei 20 K Spreizung

 Für das gewählte Gerät ergibt sich bei der gewählten Spreizung ein maximaler Volumenstrom von

$$\rightarrow$$
 43 l/h * 10 kW = 430 l/h


Problem: Strömungsgeräusche (I)

- Grund für Geräusche ist nicht das voreinstellbare Thermostatventil, sondern die Pumpe
- Geräusche entstehen bei Pumpendrücken ab ca. 200 mbar.

Geräusche? Einziger Ausweg...

Problem: der Differenzdruck von 250 mbar schlägt sich bis an die Thermostatventile nieder, welche Geräusche

(50 bis 200 mbar)

hier eingestellt: ca. 100 mbar

Problem: Strömungsgeräusche (III)

Empfehlung:

Strangdifferenzdruckregler immer alternativ mit anbieten und auf die Gefahren ohne hinweisen.

Kosten:

Listenpreis ca. 100 EUR

Vorteile:

- •Großer Wasserinhalt
- •Kein Mindestvolumenstrom
- •Externe Pumpe kann frei gewählt werden