

Trends in der Heizungstechnik

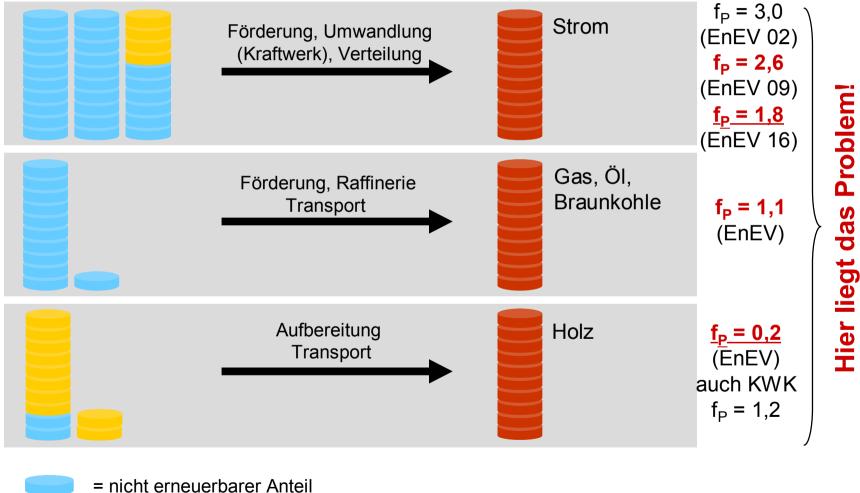
Prof. Dr.-Ing. Dieter Wolff
Ostfalia - Hochschule Wolfenbüttel

Übersicht

- Gesetze Verordnungen Förderprogramme
- Fehlentwicklungen durch EnEV/EEWärmeG/KfW/BAFA
- Einfache versus komplexe Technologien
- Brennwerttechnik oder Hybridtechnik (Pufferspeicher)
- Instandsetzungsmodernisierung Bau/Anlagentechnik
- Geringinvestiv versus umfassende Modernisierung
- Energieanalyse aus dem Verbrauch Erfolgsnachweis
- Erfolgskontrolle vorher/nachher Pflicht zukünftig für Förderprogramme

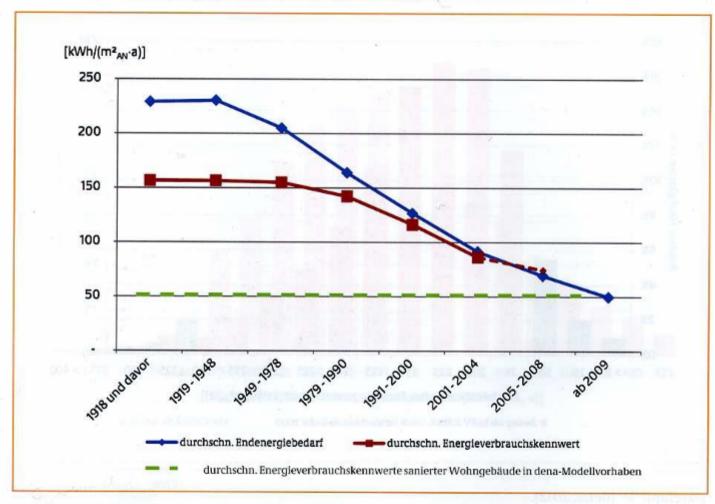
Fehlentwicklung: Primärenergiebezug und Kompensation in der EnEV - besser: Technologieoffene Lösungen

Primärenergiebezug und Kompensationsprinzip:

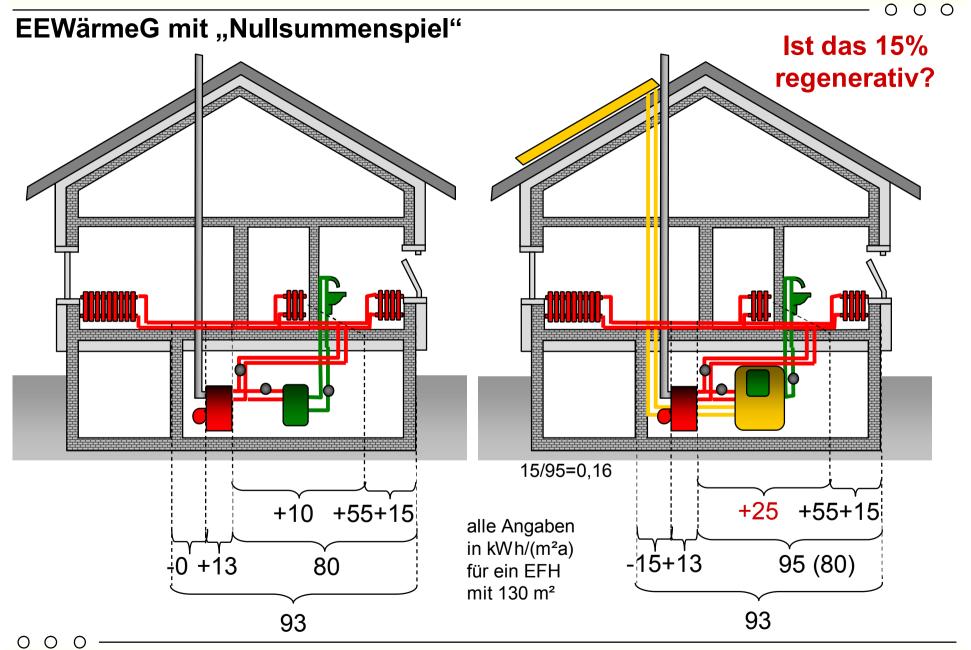

EnEV-Arbeitsentwurf auf dem Holzweg

Die Bundesregierung will den Wärmebedarf des Gebäudebestands langfristig mit dem Ziel senken, bis 2050 einen nahezu klimaneutralen Gebäudebestand zu haben. Bis 2020 soll der Wärmebedarf um 20 % gesenkt werden. "Nahezu klimaneutral" setzt das Energiekonzept der Bundesregierung mit einer "Minderung des Primärenergiebedarfs in der Größenordnung von 80 %" gleich. Der aktuelle Arbeitsentwurf für die EnEV 2012 zeigt, dass dies und die maximale Wahlfreiheit bei den Maßnahmen falsche Anreize schafft und die übergeordneten Klimaschutzziele untergräbt.

0

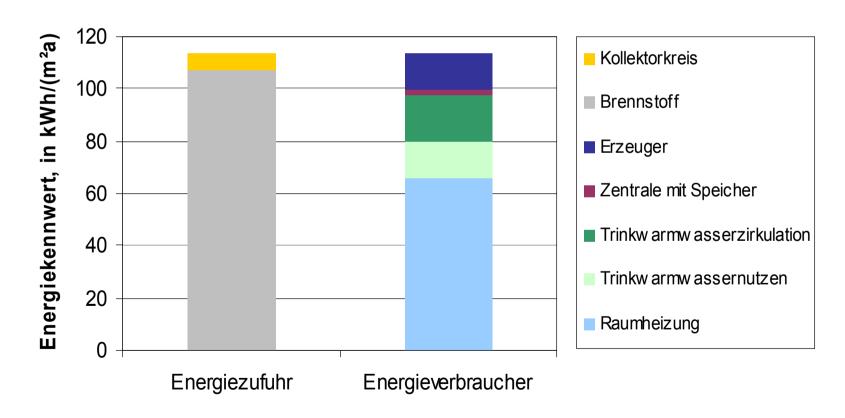

0 0

Primärenergie und Primärenergiefaktoren



Bestandsmodernisierung: Berechnete Einsparung höher als Verbrauch vorher

Endenergiebedarf und Energieverbrauch nach Baualter.


Datenquelle: (dena, 2012).

Energiebilanz neue Mehrfamilienhäuser – BMU-Projekt Solarertrag 8 kWh/(m² a) - Endenergie minus 7 kWh/(m² a)

Energiebilanz, gewichteter Ø 8 Feldanlagen, (Σ 17.967 m², ohne Nahwärme, mit Gasbrennwertkessel)

Hinweise zur Technik

Erzeugung – Verteilung – Speicherung - Abgabe

Was sind wirtschaftliche Anlagensysteme Infos der letzten Jahre ...

Brennstoff	Pellets	Scheitholz
Anlagentyp	Pelletfeuerung	Scheitholzfeuerung
Investitionen		
■ Wärmeerzeuger komplett	10.100 Euro	5.000 Euro
■ Speicher	1.500 Euro	1.500 Euro
 Lagerung/Tank/Gasanschluss 	3.000 Euro	1.000 Euro
Schornstein/Abgasleitung	2.300 Euro	2,300 Euro
Gas/Elektroinstallationen	700 Euro	700 Euro
Hausinterne Verteilung	4.100 Euro	4.100 Euro
Summe	21.700 Euro	14.600 Euro
Förderung Markteinführungsprogramm (maximaler Zuschuss)	1.500 Euro*)	0 Euro
Summe Investition	20.200 Euro	14.600 Euro
Nutzungsdauer Kesselanlage + Zubehör	15 Jahre	15 Jahre
Jahreswärmebedarf Heizung und Warmwasser	16 MWh	16 MWh
Anlagennutzungsgrad	92 %	87 %
Jahresbrennstoffbedarf	17,4 MWh	18,4 MWh _(Heimert)
Jahresbrennstoffbedarf (Weiterrechnungswert)	17,4 MWh _[Dresswed]	18,4 MWh _(Errorment)
Betriebsgebundene Kosten		
Wartung/Reinigung/Instandhaltung	280 Euro/Jahr	280 Euro/Jahr
Schornsteinfeger	120 Euro/Jahr	120 Euro/Jahr
Versicherung	0 Euro/Jahr	0 Euro/Jahr
Hilfsenergie	60 Euro/Jahr	60 Euro/Jahr
Summe betriebsgebundene Kosten	460 Euro/Jahr	460 Euro/Jahr
Kapitalgebundene Kosten		
Zinssatz	4,0 %**)	4,0 %**)
Annuität (Summe aus Zins und Tilgung)	1.820 Euro	1.310 Euro
Summe kapitalgebundene Kosten	1.820 Euro	1.310 Euro
Verbrauchsgebundene Kosten		
Erdgas - Grundpreis (16 Euro/Monat)		
Erdgas - Arbeitspreis (5,5 Cent/Kilowattstunde)		
Heizöl (75 Cent/Liter)		
Pellets (193 Euro/Tonne)	3,9 Cent/kWh _{Steicmett}	
Scheitholz (75 Euro/Raummeter)		3,8 Cent/kWh _(Heimert)
Strom - Grundpreis (10 Euro/Monat)	 	
Strom - Arbeitspreis (18 Cent/Kilowattstunde)	 	
Flüssiggas (57 Cent/Liter)		
Summe verbrauchsgebundene Kosten (brutto)	679 Euro/Jahr	699 Euro/Jahr
Gesamtkosten der Versorgung (brutto)	2.959 Euro/Jahr	2.469 Euro/Jahr

- Scheitholz
- Erdgastherme
- Flüssiggaskessel
- Pelletkessel
- Ölkessel NT
- Wärmepumpe Sole
- Wärmepumpe Wasser
- Elektroheizung

Quelle:

Hessisches Wirtschaftsministerium

Bemerkung: Alle Angaben verstehen sich brutto. Es wurde der allg. MwSt.-Satz von 19 % bzw. für Holz 7 % berücksichtigt.

Bernaricong: Alle Angaben versions and notices as wurde der ang. Awasta.

*Das Forderprogramm nach Maßgabe der 11/2007 geltenden Richtlinien.

**) Durch Inanspruchnahme von KRV-Mitteln sinkt der Zinssatz um 1,0 %.

das kommt auf den Standpunkt an...

- 1. Erdgas Brennwert
- 2. Nahwärme Gas-BHKW
- 3. Heizöl-NT
- 4. Flüssiggas Brennwert
- 5. Heizöl Brennwert
- 6. Sole-Wärmepumpe
- 7. Holzpellets

Quelle: ASUE

- 1. Wärmepumpe Sole
- 2. Ölbrennwert
- 3. Gasbrennwert
- 4. Holzpellets
- 5. Gasbrennwert + Solar

Quelle: Focus Online / Modernisierung

- 1. Scheitholz
- 2. Pellets
- 3. Erdgas Kessel
- 4. Hackschnitzel
- 5. Wärmepumpe Luft
- 6. Heizöl
- 7. Wärmepumpe Sole

Quelle: CARMEN e.V.

- 1. Strahlungsheizung
- 2. Gasheizung
- 3. Elektroheizung
- 4. Ölheizung
- 5. Wärmepumpe Sole
- 6. Pellets
- 7. Öl + Solar

Quelle: T4L Infrarot

1. Ölbrennwert

- 2. Gasbrennwert
- 3. Flüssiggasbrennwert
- 4. Wärmepumpe Sole
- Pelletkessel

Quelle: IWO

... Und was sagt uns das?

das Optimum gibt es nicht!

Systemfragen für Raumheizung (RH) und Trinkwarmwasser (TWW)

Erzeugersysteme

Gas-Öl-Kessel: Brennwerttechnik – Brennstoffpreise - niedrige Investitionen

Pelletheizung: Preisentwicklung – Holz begrenzt – mittlere Investitionen

Wärmepumpe: Wärmequelle – Effizienz in Praxis – hohe Investitionen

Solarthermie: Gratisenergie – Einbindung – mittlere Investitionen

Mini-BHKW: Systemgröße – Brennstoffpreise – hohe Investitionen

Fernwärme: Anschlussdichte – Preise – Investitionen unterschiedlich

Verteilsysteme

Bewährte Zweirohrheizung mit Heizkörpern in gut gedämmten Gebäuden Gedämmt auch im beheizten Bereich - Hydraulischer Abgleich Im wahren Passivhaus: nur Luftheizung mit KWL und evtl. Notheizkörper

Wärmeabgabesysteme

"Schnelle Systeme" – NT-Betrieb – Plattenheizkörper – Lüftungsheizung

Gesamtsystem: Einfach – Kompakt – Effizient – Gut gedämmt

Typische Kosten im EFH - Erzeuger - Gering investive Maßnahmen

- Brennwertkessel: 5000 ... 6000 € (incl. Schornsteinsanierung)
- Außenluftwärmepumpe: 10.000 € (mit baulichen Maßnahmen)
- Erdreichwärmepumpe: 15 ... 20 T€ (mit Erdarbeiten)
- Pelletkessel mit Lagerfläche: 10 ... 15 T€
- BHKW: 30 ... 40 T€
- Solaranlage: 5000 (nur TWW) ... 8000 € (TWW + Heizungsunterst.)
- Lüftung: 2500 (Abluft) ... 5000 € (WRG) zzgl. 1 ... x T€ Nebenarbeiten
- Leitungsdämmung: 15 ... 25 €/lfdm
- Ventile: 35 € (Thermostat) ... 50 € (Elektronisches Ventil)
- hydraulischer Abgleich: 300 ... 1000 € (ohne ... mit Komponenten)
- Pumpe: 200 € (normale Regelpumpe) ... 500 € (Hocheffizienz)

Fehlentwicklungen: Nah- und Fernwärmewärmenetze

Zukünftige Wärmeversorgung von Gebäuden

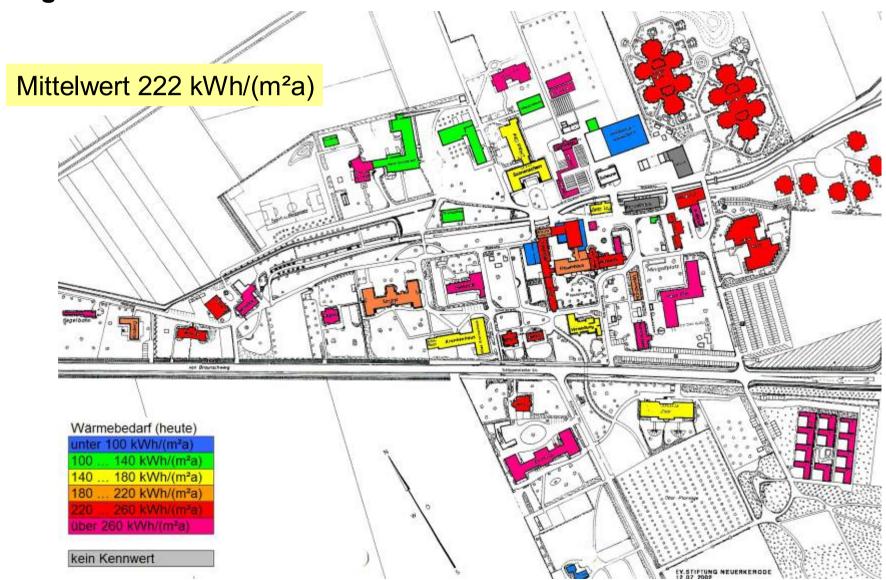
Nah- und Fernwärme: Aus- oder Rückbau?

Die Klimaschutzziele im Energiekonzept der Bundesregierung für 2050 lassen sich nur durch einen großen Beitrag des Gebäudesektors erreichen. Indirekt setzt das Konzept dabei auch auf einen Ausbau von Nah- und Fernwärme zur Wärmeversorgung von Gebäuden. In der heutigen Situation erscheint dies vielerorts durchaus logisch zu sein. Betrachtet man aber die Gesamtzusammenhänge, ist der weitere Ausbau von Nah- und Fernwärme eine absehbare Fehlentwicklung.

Ressourcenverbrauch

Für Begrenzung Ressourcenverbrauch Strom/Wärme wird vorgeschlagen, die Endenergien (nicht Primärenergie!) in folgende drei Gruppen einzuteilen:

- fossile Endenergie (keine Kompensation nach EnEV!)
- begrenzt verfügbare Biomasse (keine Kompensation nach EnEV!):
 35 kWh/(m² a)
- unbegrenzt verfügbare Energie (Sonne hier PV, Wind)

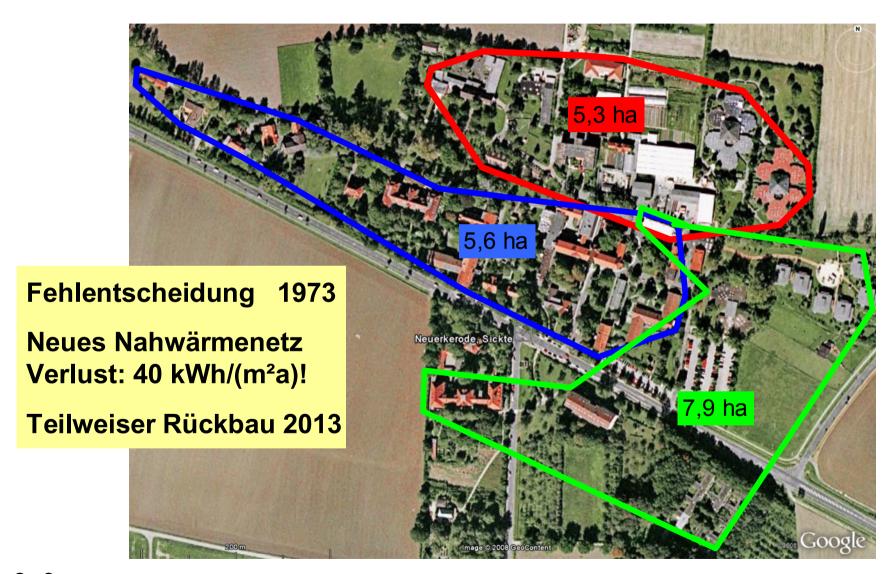


Beispiel: Neuerkerode 2015

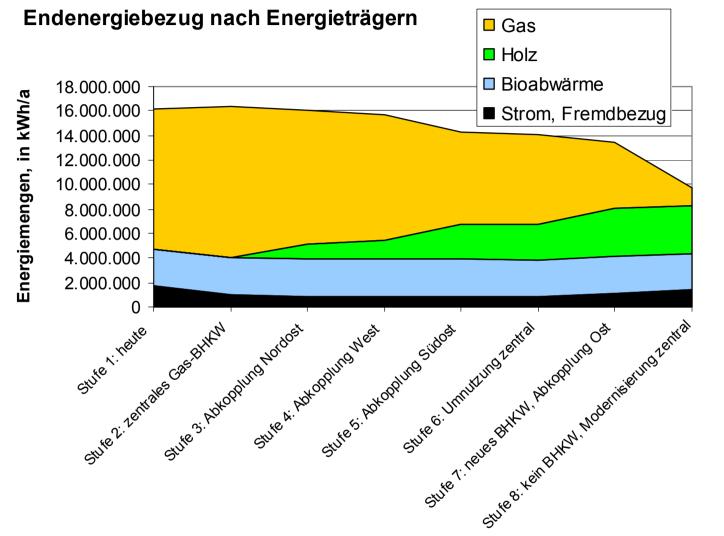
Evangelische Stiftung für Behinderte Bewohner (850)

DBU-Projekt: 2007 - 2013

Energiebilanz des Bestandes – Dorf – 55 Gebäude – ca. 50 000 m²



0 0 0

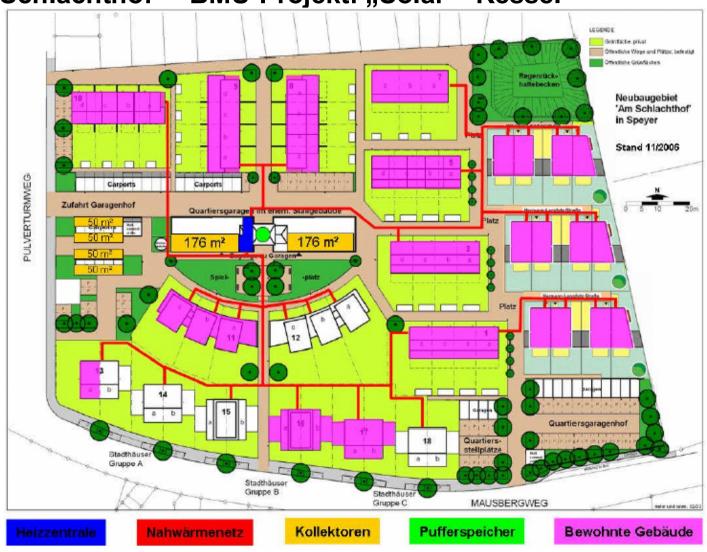


Energiebilanz langfristig Mittelwert 103 kWh/(m²a) Wärmebedarf (langfristig) unter 100 kWh/(m²a) 100 ... 140 kWh/(m²a) 140 ... 180 kWh/(m²a) kein Kennwert

Problem: Anschlussdichte - DBU-Projekt: Neuerkerode

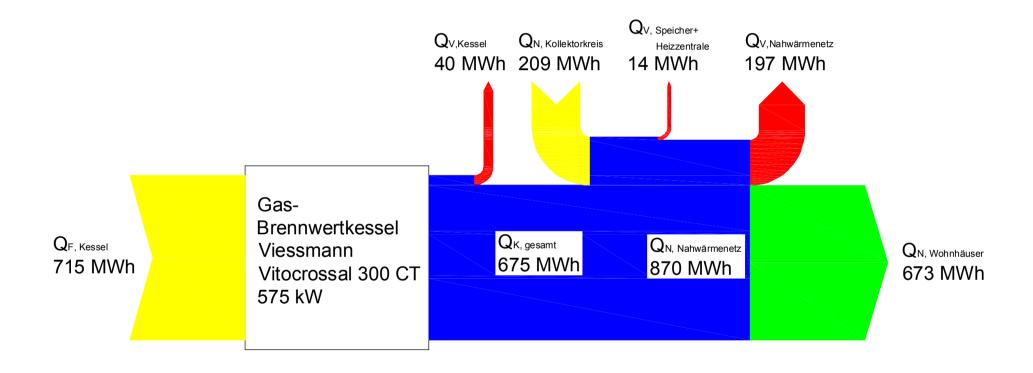
Verminderung von Netzverlusten um 55 % (1,9 ≥ 0,9 GWh/a) Verminderung der CO₂-Menge um 64 % (4000 ≥ 1400 t/a)

0 0 0


Fernwärme

Hinweise

- Neuplanungen/Vollsanierungen: kritische Anschlussdichte beachten
- Netzanschlüsse sind immer als Einzelfälle zu bewerten.
- Ziel sind Netzverluste ≤ 10 ... 15 kWh/(m²a)
- Ausnahme: Abwärme steht aus einzelnen Prozessquellen kostenlos zur Verfügung


Solare Nahwärme – Feldanlage Speyer "Alter Schlachthof" - BMU-Projekt: "Solar – Kessel"

Macht das Sinn?

Jahresbilanz - Nullsummenspiel

Optimierung von Heizungsanlagen – gering investiv

DBU-PROJEKT: OPTIMUS

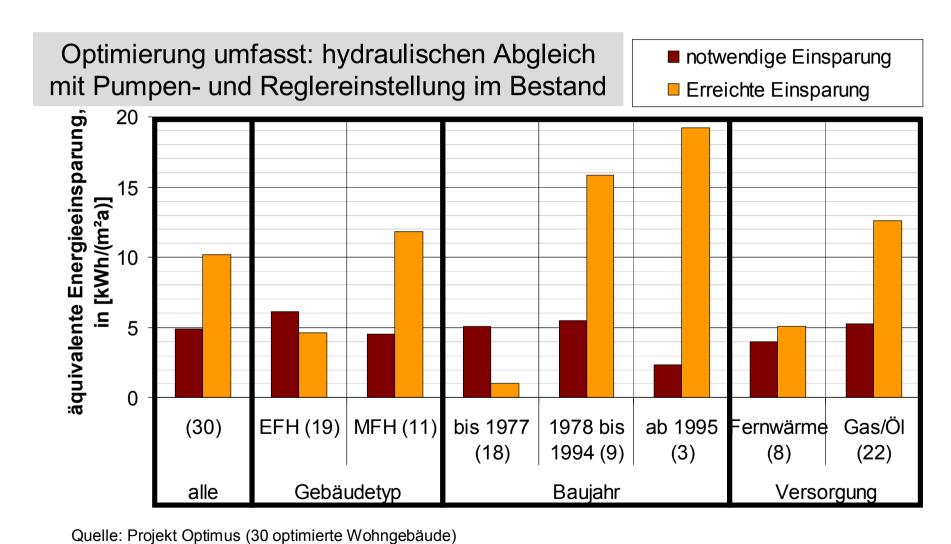
Die Optimierung in der Planung und Ausführung umfasst:

- 1. den hydraulischen Abgleich mit
- 2. Voreinstellung von Thermostatventilen,
- 3. die Einstellung der ausreichenden Förderhöhe an der Pumpe
- 4. die Einstellung der Vorlauftemperatur am zentralen Regler.

Optimierung
zur Verminderung
des Verschwendungspotentials für Wärme,
der elektrischen Hilfsenergie für die Pumpe und
zur Komfortverbesserung

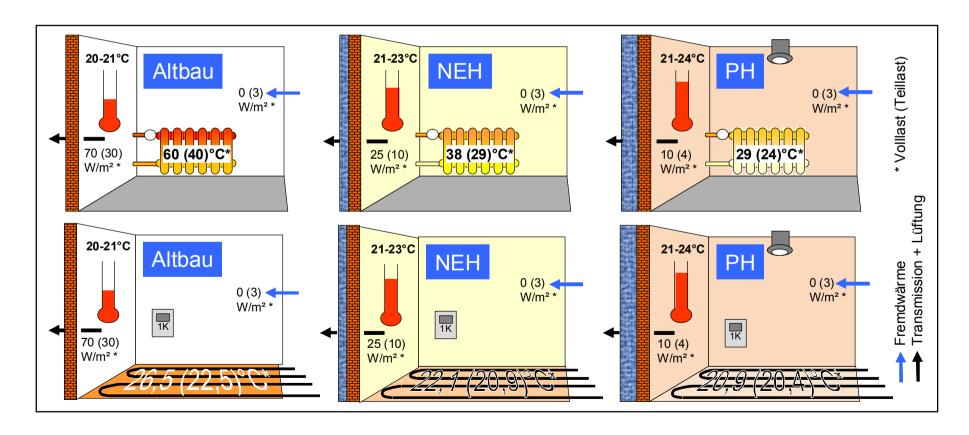
DBU-OPTIMUS: Einzelbetrachtung - neues MFH in Braunschweig

MFH - 18 Wohneinheiten - Bj. 1998 - 1250 m² - Neubau ohne QS Nachträglich: Optimierung mit Hydraulischem Abgleich


Optimierungsmaßnahmen ohne Investitionen in Komponenten:

- Voreinstellung der Thermostatventile
- Einstellung der optimalen Pumpenförderhöhe
- Optimale Einstellung der Regelung

Verringerung des Verbrauchs thermischer Energie durch Optimierung von 99 auf 78 kWh/(m²a) № 21 % → 140 €/(WE a)



Heizungsoptimierung lohnt sich immer im Neubau und nach der Modernisierung! Energieeinsparung dreimal so hoch als bei solarer Sanierung bei 1/3 der Kosten

Regelbarkeit der Wärmeübergabe:

Sind beibehaltene Heizkörper oder Fußbodenheizungen bei geringen Heizlasten überhaupt noch vernünftig stetig regelbar? Nein! Keine konventionelle Fußbodenheizung bei großen Fensterflächen!

TGA – Fachplaner 06/2012 – Erfolgsnachweis zusammen mit Allianzen als Problemlöser

Energetische Modernisierung mit Transparenz

Erfolgskontrolle sollte Pflicht sein

Die Erfolgskontrolle einer energetischen Modernisierung ist einfach realisierbar. Aber scheinbar will sie keiner – mit Ausnahme des Kunden. Die Abwehrhaltung der Branche könnte schnell zum Bumerang werden.

Monatliche Verbrauchserfassung und Messungen

Datenauswertung als neues Dienstleistungsangebot – Transparenz – Erfolgskontrolle - Ausweis

Schwankungen bei gleicher Außentemperatur belegen:

Notwendigkeit von Messungen über längere Zeiträume für Gebäude- und Kesseleffizienz

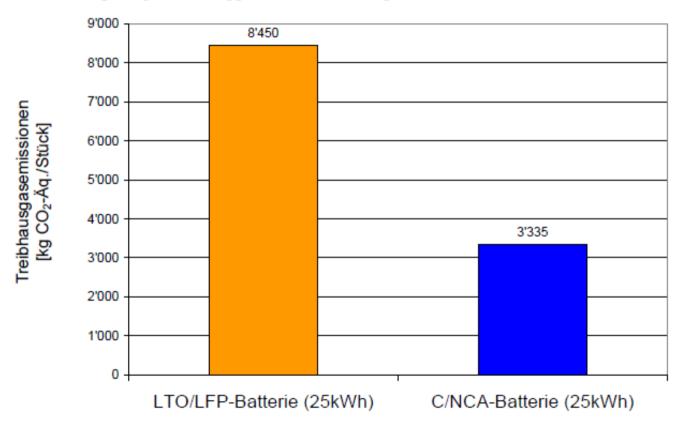
(kein kurzer Heizungscheck)

Jahresenergiemenge:

363 MWh/a

 $34.9 \text{ kW} \cdot 251 \text{ d/a} \cdot 24 \text{ h/d} = 210 \text{ MWh/a} (58\%)$

 $+ 17,5 \text{ kW} \cdot 365 \text{ d/a} \cdot 24 \text{ h/d} = 153 \text{ MWh/a} (42\%)$


Fazit

- Fazit: das wirtschaftlichste Anlagensystem gibt es nicht, sondern jeweils eine Individuallösung! Beratung erforderlich!
- generell: bauliche und anlagentechnische Maßnahmen sollten nicht gegenseitig aufgerechnet werden sondern sich im Sinne des Klimaschutzes geeignet ergänzen!
- hinsichtlich EnEV und EEWärme sollte eine Vereinheitlichung unter einem Dach angestrebt werden!
- Die derzeitige Bewertung von Biomasse sollte revidiert werden: Einführung eines "Biomassebudgets": 30 – 35 kWh/(m² a)
- Zukünftig: Baubegleitung mit Qualitätssicherung und mindestens einjährige monatliche Verbrauchsmessung als Erfolgsnachweis

Quelle: Ökobilanz von Li - Ionen Batterien 9/2010 Paul Scherrer Institut

Die Herstellung der LTO/LFP-Batterie verursacht knapp 8.5 t(CO₂-Äq.), die der C/NCA-Batterie rund 3.3 t(CO₂-Äq.). Bei beiden Batterien macht CO₂ den grössten Teil der Treibhausgasemissionen aus, der Anteil liegt bei jeweils knapp 82%. Den Rest tragen CH₄, N₂O und verschiedene FCKW bei.

Umrechnung 2,32 kg CO₂ entspricht: 1 I Benzin

8450 kg CO₂ entspricht 3225 l Benzin

Damit kann ein 3 – I – Auto Über 100 000 km weit fahren

Abbildung 4.1 Kumulierte Treibhausgasemissionen aus der Herstellung der beiden untersuchten Batterietypen.

These

Wirtschaftlich und zur Ressourcenschonung sinnvoll ist heute im Neubau und bei der energetischen Modernisierung:

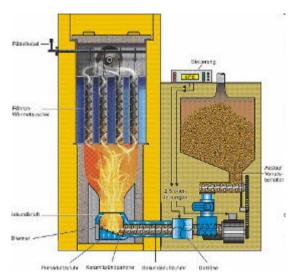
Sehr guter Wärmeschutz H_T : 0.25 - 0.3 W/(m^2 K) und eine einfache und effiziente, aber qualitätsgesicherte Anlagentechnik

Dazu gehören: sinnvolle nicht zu hohe Fensterflächenanteile, optimierter Kompaktheitsgrad und eine vernünftige Ausrichtung

Regenerativ ist derzeit nur PV am Gebäude und effiziente Wärmepumpentechnik im Wettbewerb mit Gas-/Ölbrennwerttechnik in kleineren Gebäuden sinnvoll. In größeren Wohnund Nichtwohngebäuden gewinnen Klein-BHKWs an Bedeutung

Holz und Biomasse werden wegen begrenzter Verfügbarkeit an Bedeutung verlieren (BMU – Erfahrungsbericht - EEWärmeG)

D. Wolff - housewarming 2013 - Hamburg 30. August 2013


3900 TWh a Primär- Energie	Übrige Verluste, in Leitungen usw. 25 Verluste Kraftwerke	156 Primär- Energie	Erneuerbare 11 Inland Braunkohle, Steinkohle, Gas 29		Pro Kopf und pro Tag - Verbrauch
	41		Kohle Importe 14	117 Primär-	Alle Angaben in
$\frac{2517}{\frac{TWh}{a}}$	Industrie, Staat 23	90 End- Energie	Uran Importe 16	Energie Importe	Biomasse 16 81
End- Energie	Fliegen 30	67 Haus- halte	Gasimporte 30		Wind bare Offshore 25
	Auto 12 Strom 5		Ölimporte		Wind Onshore 25
	Heizung Warm- wasser 20		57		Solarstrom 5
heute heute künftig Wofür Energie gebraucht wird Wo Energie herkommt Quelle: Energiedepesche 02/2011					

Prognose für 2050 aus Leitstudien der Bundesregierung:

Die zukünftige Wärme- und Stromversorgung können zukünftig nicht voneinander getrennt betrachtet werden:

Die Primärenergiefaktoren für den Energieträgermix für Wärme und Strom werden bei etwa gleichen Werten von 0,6 liegen. Dies gilt nicht für die CO₂-Emissionen und für die Energiekosten. Fehlentwicklungen aus der rein primärenergetischen Bewertung – wie bereits heute bei der EnEV in Anlagen mit Holz oder zur KWK – werden auftreten.

Holzkessel (Pellets, Holzhackschnitzel, Scheitholz)

zentraler Pellet/Hackschnitzelkessel

- 150 250 €/Tonne (4 6 Cent/kWh)
- Betrieb ähnlich arbeitsextensiv wie Gas/Ölkessel

Vergaserkessel, Kamin mit Wassertasche

- 50 100 €/Tonne (1,5 2,5 Cent/kWh)
- arbeitsintensiv, kein Frostschutz!

Pelletkessel mit Lager

• 220 – 280 €/Tonne (5 Cent/kWh)

BHKW

Hinweise

- BHKW sind Grundlasterzeuger und sollten auch so betrieben werden!
- sie haben teilweise eine untere Modulationsgrenze
 (von typisch 50 ... 80 % wenn überhaupt; sonst Pufferspeicher)
- am besten sind Anwendungsfälle mit ganzjähriger Anforderung an Wärme bzw. lange Laufzeiten ≥ 5000 h/a,
- für EFH sind sie heute aus wirtschaftlicher Sicht noch zu groß (mindestens 40 000 ... 60 000 kWh/a konstante Wärmeabnahme)
- d.h. im Wohnbau Auslegung auf TWW Wärmeabnahmeleistung für TWW: 100 W/Person (12 kW_{th} entspricht 120 Personen)

Rückblick 2006:

Fehlentwicklungen am Beispiel: Solare Sanierung Förderung und Modernisierungsumlage von 11% verführt zu Fehlinvestitionen

Ein beworbenes Programm "Solare Sanierung" [SOLSAN] verspricht für ein Bestandsgebäude [mit einem für Bestandsbauten erhöhten Wärmebedarf von 200 kWh/(m² a) für Raumheizung und Trinkwarmwasser] eine Reduzierung um 60 kWh/(m² a) durch die Verbindung: "Solarenergienutzung & Anlageneffizienz"

Nicht – oder nicht direkt – erwähnt wird, dass mit der solaren Sanierung auch weitere Maßnahmen wie der Einsatz eines Brennwertheizkessels, ein hydraulischer Abgleich und weitere Optimierungsmaßnahmen durchgeführt wurden.

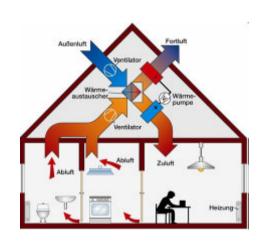
Nicht – oder nicht direkt – erwähnt wird, dass mit einer Solaranlage für Warmwasser und Heizungsunterstützung nur 8 bis maximal 20 kWh/(m² a) bezogen auf die beheizte Fläche an Endenergieeinsparungen möglich sind – und zwar unabhängig ob Alt- oder Neubauanlage. Bei einem angeführten Beispiel sind es lediglich 7 kWh/(m²a)!

Äquivalenter Energiepreis: 0,22 €/(m²a) nicht wirtschaftlich

Verlegedichte von Trinkwarmwasserleitungen - Zirkulationsleitungen und zukünftige elektrische Konsequenzen

ungünstig: lange flache Baukörper günstig: kompakte, hohe Baukörper

0,38 m/m²



0,14 m/m²

- im Beispiel links ergeben sich gemessen für 2011:
 19 kWh/(m²a) Zirkulationsverlust bei 12 kWh/(m²a) Warmwassernutzen
- selbst mit Solarthermie (hier 34 %) und einem üblichen Kessel (88 % brennwertbezogen) rückt elektrische Versorgung in den Fokus der Überlegungen

Lüftungsanlagen aus Gründen des Komforts und der "Bauhygiene"

Investition:

6000 – 8000 € für Zu- und Abluftanlage mit WRG 2000 – 3000 € für Abluftanlage

zusätzliche Kapitalkosten (25 a)

450 - 600 €/a (150 - 250 €/a)

= einzusparende Energiekosten

jährlich einzusparende Energiemenge (25 a):

3800 kWh/a (1300 kWh/a)

zum Vergleich: theoretisch eingesparte Energiemenge:

$$25\frac{\text{kWh}}{\text{a}\cdot\text{m}^{3}/\text{h}}\cdot0.4\,\text{h}^{-1}\cdot375\,\text{m}^{3}\cdot80\% = 3000\,\text{kWh/a}$$

minus: 1000 (350) kWh/a für Ventilatorbetrieb!

Anforderungen der DIN 1946 – 6: Notwendigkeit der Lüftung in Niedrigenergiehäusern?

- Stand der Technik ja (da 2009 erschienen und neu)
- Regel der Technik ja (da Norm)
- Anerkannte Regel der Technik nein (da, zu neu)
- Gesetz nein (da nicht bauaufsichtlich eingeführt und nicht in EnEV herangezogen – nur im Referenzgebäude)

Zusammenfassung

- DIN 1946-6 im Mietrecht (noch) nicht unmittelbar anwendbar, da jedenfalls mangels Langzeitbewährung (noch) keine anerkannten Regeln der Technik, und zur Auslegung des "vertragsgemäßen Gebrauches" ungeeignet.
- Noch sind lüftungstechnische Maßnahmen nach DIN 1946-6 zur Herstellung vertragsgemäßen Zustandes nicht notwendig.
- 3. Das Fehlen von Lüftungsanlagen stellt keinen Mangel dar.
- Schimmel etc. bleibt Mangel, den der Mieter bei unzureichender zumutbarer Lüftung zu verantworten hat.

RA Nierhaus - Energiekonferenz – Bochum – 15.02.2012

- Es ist denkbar, dass sich in Zukunft das Vorhandensein von Lüftungsanlagen (in einem bestimmten Segment) mit der Folge der nutzerunabhängigen Lüftung als üblicher Standard etabliert, der dann als vertragsgemäße Soll-Beschaffenheit vom Mieter erwartet werden darf.
- Die Mietparteien k\u00f6nnen durch vertragliche Vereinbarungen einen Standard als vertragsgem\u00e4\u00df vereinbaren, der unterhalb des von der DIN 1946-6 vorgegebenen Standards liegt.

RA Nierhaus - Energiekonferenz - Bochum - 15.02.2012