
Kennwerte – Innenlasten

1. Kurzinfo

Alle Objekte innerhalb des beheizten Bereiches des Gebäudes mit einer Temperatur über der Raumtemperatur geben Wärme ab. Diese innere Fremdwärme (meist Q_I bzw. Q_i) ist auf die Wärmeabgabe von Personen, elektrischen Geräten und beheizten Komponenten der Anlagentechnik zurückzuführen.

Die im Verlaufe einer Heizperiode ist zunächst einmal ein Fremdwärmeanfall, weil sie ungeregelt auch dann auftritt, wenn keine Heizwärme benötigt wird. Den Teil des Fremdwärmeanfalles, der tatsächlich zu Heizzwecken benutzt wird, nennt man den nutzbaren inneren Fremdwärmegewinn.

In den meisten Bilanzverfahren wird nur die Abwärme von Personen und des elektrischen Energieverbrauchs (Beleuchtung und Geräte) als innere Fremdwärme angesehen. Der andere Teil der inneren Fremdwärme – die ungeregelt anfallende Abwärme von Komponenten der Anlagentechnik – wird oft vernachlässigt.

Der nicht nutzbare Teil der Innenlasten führt in der Praxis zu erhöhten Raumtemperaturen und/oder erhöhten Luftwechseln.

2. Kennwerte Innenlasten

Die innere Fremdwärme aus Abwärme von Personen und aus dem Haushaltsstromverbrauch weist einen ausgeprägten Tagesgang und eine räumlich starke Verteilung (Küche, Hauptnutzräume), jedoch einen geringer ausgeprägten Jahresgang auf.

Im Winter ist der Wert etwa 35 % höher als im Sommer.

Die Ansätze für die Höhe der inneren Fremdwärme variieren. Die Angaben reichen im Wohnbau von 1,9 W/m²... 2,6 W/m² (Sommer ... Winter) für das NEH und Passivhaus bis 2,5 W/m²... 3,2 W/m² (EFH ... MFH) für den Gebäudedurchschnitt. Ältere Untersuchungen ermitteln etwa 5 W/m².

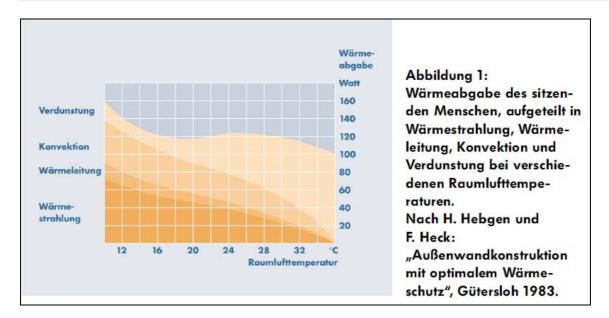
Der Fremdwärmeanfall durch Haushaltsstromverbrauch kann aus Messwerten abgeschätzt werden. Es wird jedoch nur ein bestimmter Anteil als innere Fremdwärme wirksam. Die typische Nutzbarkeit (Anteil des Stroms, der tatsächlich zu innerer Fremdwärme wird) wird mit 80 % geschätzt.

Gebäudenutzungstyp	innere Fremdwärmeleistung \dot{q}_{IG} , in [W/m²]	Gebäudenutzungstyp	innerer Fremdwärmeleistung \dot{q}_{IG} , in [W/m²]
Lager	1,3	Sport	3,9
Schulen	1,54,7	Krankenhäuser	4,15,8
EFH	2,5	Industrie	5,6
Bühnen/Säle	3,1	Verkauf	5,9
MFH	3,2	Bäder	6
Verwaltung	3,56,4	Restaurant	17

Innere Fremdwärmeleistung (ohne Wärmeverteilung und -speicherung)

Quelle: Jagnow/Horschler/Wolff

Quelle: IWU


Spezifische Wärmeabgabeleistung innerer Wärmequellen* q in W/m²							
	EFH	MFH	Heime	Verwaltung	Schulen	andere	
elektr. Geräte	1,78	2,28	2,66	2,57	1,54		
Personen	1,11	1,43	2	1,14	1,74		
Kaltwasser-Ablauf	-0,64	-0,83	-0,97	-0,17	-0,44		
Warmwasserbereitung	0,69	0,88	1,03	0	0		
Verdunstung	-0,43	-0,56	-0,65	0	0		
Summe (Standardwert)	2,5	3,2	4,1	3,5	2,8	genauere Berechnung	

^{*} zeitliches Mittel während der Heizzeit

	Als i	nnere Wärmequelle w	irksame	Wärmeve	erlustleis	tung dez	entraler \	WW-Bere	iter in W		
zu de	ckender Wärmebedarf _I	oro Gerät in kWh/a	250	500	750	1000	1500	2000	3000	5000	8000
	Kochendwassergeräte		1	2	4	5	7				
as.	Speicher	5 bis 10 l	22	22	22	22	22				
jeräte		>10 bis 30 l	28	28	28	28	28	28	28		
Elektrogerate		> 30 bis 80 l	40	40	40	40	40	40	40	40	40
		> 80 bis 200 l	66	66	66	66	66	66	66	66	66
		> 200 bis 400 l	112	112	112	112	112	112	112	112	112
	Durchlauferhitzer		0	1	1	1	2	2	3	6	9
äte	Durchlauferhitzer	ohne Abgasklappe	44	46	48	49	53	56	62	75	95
asgeräte	mit Zündflamme	mit Abgasklappe	104	108	111	115	123	130	146	176	222
9	Durchlauferh. mit ele	ektron. Zündung	2	3	5	7	10	13	20	33	52

Quelle: IWU

Quelle: Energieberatung Bayern

3. Ausnutzungsgrad für Fremdwärme

Der ungeregelt auftretende Fremdwärmeanfall - bestehend aus der passiven solaren und der inneren Fremdwärme - kann nur bis zur Höhe der momentanen Verlustleistung (bei normalen Temperaturen und Luftwechseln) der beheizten Räume genutzt werden. Darüber hinaus erhöht der Fremdwärmeanfall zunächst die Innentemperatur.

Der Fremdwärmenutzungsgrad η_F beschreibt den Anteil der Fremdwärme, der zur Aufrechterhaltung der definierten Nutzungsbedingungen eines Raumes dient und der nicht zu erhöhten Verlusten führt. Er ist ein dimensionsloser Umrechnungsfaktor zwischen dem Fremdwärmeanfall und den nutzbaren inneren Wärmegewinnen.

Er ist i.A. das Ergebnis von Simulationsrechnungen (thermische Gebäudesimulation) typischer Gebäudemodelle ohne Berücksichtigung der Regelungstechnik und anla-

gentechnischer Randbedingungen. Der Fremdwärmenutzungsgrad wird in den Bilanzverfahren nach verschiedenen Formelansätzen bestimmt. Teilweise sind Festwerte definiert oder es werden empirische Formeln herangezogen. Grundlage für eine Berechnung sind üblicherweise die Höhe des Fremdwärmeanfalles und der Wärmeverluste des beheizten Raumes. Andere Verfahren berücksichtigen zusätzlich die Speicherfähigkeit des Gebäudes und die Art der Regelung der Temperatur im Raum.

Beispiel: Gesamtbilanzverfahren

$$\eta = f_{\eta} \cdot (1 - 0.2 \cdot \gamma) \text{ mit } \gamma = \frac{q_1 + q_S}{q_T + q_V}.$$

Regelungsart	Bewertungsfaktoren für Fremdwärmenutzung f _n , in [-]	Beispiele				
ohne zentrale Vorregelung, manuelle Nachregelung	0,40	Wärmeerzeuger mit Festtemperatur + Handventile				
ohne zentrale Vorregelung, aber mit Nachregelung	0,85	Wärmeerzeuger mit Festtemperatur + Thermostatventile				
mit zentraler Vorregelung, und Nachregelung	0,90	Wärmeerzeuger mit witterungsgeführter Regelung + Thermostatventile				
mit zentraler Vorregelung, und Nachregelung	0,95	Wärmeerzeuger mit witterungsgeführter Regelung + Einzelraumregelung				

Bewertungsfaktoren für die Fremdwärmenutzung

Quelle: Jagnow/Horschler/Wolff EnEV Buch 2002