UNIVERSITÄT GESAMTHOCHSCHULE KASSEL

FACHGEBIET BAUPHYSIK
UNIV.-PROF. DR.-ING. GERD HAUSER

Bauphysikalische Grundlagen Feuchtelehre

Vorlesungsskript Bauphysik I und II

Dezember 2003

Der Umdruck ist zum persönlichen, internen Gebrauch bestimmt.

Inhaltsverzeichnis

1	Ph	ıysik	alische Grundlagen	3
	1.1	Wa	asserdampf	3
	1.2	Wa	asser	7
	1.3	Eis	3	7
	1.4	Sc	hnee	7
	1.5	Re	if	7
2	Tra	ansr	portmechanismen	8
	2.1		nvektion	
	2.2		fusion	
	2.3	Ka	pillarleitung	. 15
3	Ве	efeuc	chtungs- und Trocknungsvorgänge	. 17
4	W	asse	eraufnahme	. 18
5	GI	Gleichgewichtsfeuchte von Baustoffen		.20
	5.1	Ke	nnzeichnung	.20
	5.2	So	rptionsisotherme	20
	5.3	Pra	aktischer Feuchtegehalt	21
6	Fe	euch	teschutz im Hochbau	.22
	6.1	Zw	eck des Feuchteschutzes	22
	6.2	Fe	uchtebilanz der Raumluft	.22
	6.	2.1	Wasserdampfproduktion	.22
	6.	2.2	Feuchteabfuhr durch Lüften	23
	6.	2.3	Feuchteabfuhr durch Diffusion	24
	6.	2.4	Sorption	25
	6.	2.5	Raumluftfeuchte	28
	6.	2.6	Lüftungssysteme	.30
	6.3	Ta	uwasserbildung auf Bauteiloberflächen	.31
	6.	3.1	Taupunkttemperatur	32
	6.	3.2	Oberflächentemperaturen	.33
	6.	3.3	Bedingung für Tauwasserbildung	36
	6.	3.4	Bedingung für Schimmelpilzbildung	.38
	6.	3.5	Tauwasser- und Verdunstungs-Massenstromdichte	38

7		uchteschutztechnische Anforderungen gem. DIN 4108, Teil 3 - Klimabeding uchteschutz	_
	7.1	Tauwasserbildung im Innern von Bauteilen	40
	7.1	1.1 Anforderungen	40
	7.1	1.2 Klimabedingungen	40
	7.1	1.3 Wärmeübergangswiderstände	41
	7.1	1.4 Stoffkennwerte	41
	7.1	1.5 Berechnungsverfahren	42
	7.1	1.6 Bauteile, für die kein rechnerischer Nachweis erforderlich ist	46
	7.2	Gegenüberstellung belüfteter und nicht belüfteter geneigter Dächer	50
8	Re	genschutzgenschutz	54
	8.1	Beanspruchungsgruppen	54
	8.2	Hinweise zur Erfüllung des Regenschutzes	55
	8.2	2.1 Außenwände	55
	8.2	2.2 Fugen	58

1 Physikalische Grundlagen

Die Feuchtelehre beschreibt das Verhalten von Wasser in

• gasförmigem Zustand: Wasserdampf (feuchte Luft)

• flüssigem Zustand: Wasser (Regen, Tauwasser)

festem Zustand: Eis

1.1 Wasserdampf

Wasserdampf befindet sich als Bestandteil des Luftgemisches in der Atmosphäre und wird im Innern von Gebäuden durch die Menschen und Tiere sowie durch Kochen, Baden, Waschen usw. erzeugt.

Die Luft kann in Abhängigkeit von der Temperatur die in Bild 1.1 dargestellte Menge Wasserdampf enthalten:

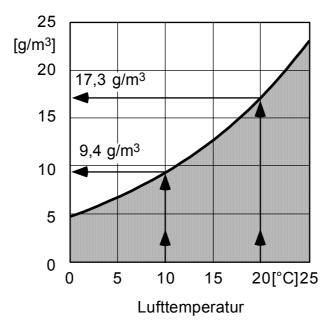


Bild 1.1: Mögliche Wasseraufnahme der Luft.

Die rechnerische Ermittlung erfolgt über:

$$\frac{m_D}{V} = \frac{p_D}{R_D \cdot T} = C_D \qquad \frac{m_L}{V} = \frac{p_L}{R_L \cdot T}$$
 Gesamtdruck
$$p_{ges} = p_D + p_L$$
 mit m Masse (m_D: absolute Feuchte) [kg]
$$V \quad \text{Volumen} \qquad \qquad [m^3]$$
 p Partial- oder Teildruck (1 Pa = 1 N/m² = 1 J/m³) [Pa]
$$R \quad \text{Gaskonstante} \qquad \qquad [kJ/(kg \ K)]$$

$$R_{Wasserdampf} = R_D = 0,462 \ kJ/(kg \ K) = 462 \ Pa \ m³/(kg \ K)$$

$$R_{Luft} \qquad = R_L = 0,287 \ kJ/(kg \ K)$$

$$C_D \quad \text{Absolute Feuchte, Konzentration} \qquad [kg/m³]$$

Bei massebezogener Konzentration

$$C_D = v \cdot \rho$$
 [kg/m³]
mit v Wasserdampfgehalt [kg/kg tr. L.]
 ρ Rohdichte der trockenen Luft [kg tr. L./m³]

Die maximale Wasserdampfmenge ergibt sich, wenn für p_D der Sättigungsdampfdruck p_S eingesetzt wird.

Der Wasserdampfsättigungsdruck p_S kann entweder aus Tabelle 1.1 entnommen werden oder durch folgende Formel angenähert werden:

$$p_s = a \cdot \left(b + \frac{\theta}{100 \, ^{\circ}C}\right)^n \text{ oder } p_s = 610.5 \cdot e^{\frac{d \cdot \theta}{c + \theta}}$$
 [Pa]

Dabei bedeuten a, b und n bzw. c und d Konstanten mit folgenden Zahlenwerten:

Demnach erhält man für z.B. 20°C

$$\left(\frac{m}{V}\right)_{max} = \frac{2340 \text{ Pa kg K}}{0,462 \text{ kJ} \cdot 293,15 \text{ K}} = 0,0173 \frac{\text{kg}}{\text{m}^3} = 17,3 \frac{\text{g}}{\text{m}^3}$$

und für 0°C

$$\left(\frac{m}{V}\right)_{max} = \frac{611Pa \, kg \, K}{0,462 \, kJ \cdot 273,15 \, K} = 0,0048 \, \frac{kg}{m^3} = 4,8 \, \frac{g}{m^3}$$

1 Pa =
$$1 \frac{N}{m^2} = \frac{Ws}{m^3}$$

1 Ws = 1J = 1N·m
1 mbar = 1hPa

Tabelle 1.1: Wasserdampfsättigungsdruck p_s bei Temperaturen von 30,9 bis - 20,9 °C (DIN 4108 Teil 5).

Temperatur	Wasserdampfsättigungsdruck [Pa]									
[°C]	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
30	4244	4269	4294	4319	4344	4369	4394	4419	4445	4469
29	4006	4030	4053	4077	4101	4124	4148	4172	4196	4219
28	3781	3803	3826	3848	3871	3894	3916	3939	3961	3984
27	3566	3588	3609	3631	3652	3674	3695	3717	3793	3759
26	3362	3382	3403	3423	3443	3463	3484	3504	3525	3544
25	3169	3168	3208	3227	3246	3266	3284	3304	3324	3343
24	2985	3003	3021	3040	3059	3077	3095	3114	3132	3151
23	2810	2827	2845	2863	2880	2897	2915	2932	2950	2968
22	2645	2661	2678	2695	2711	2727	2744	2761	2777	2794
21	2487	2504	2518	2535	2551	2566	2582	2598	2613	2629
20	2340	2354	2369	2384	2399	2413	2428	2443	2457	2473
19	2197	2212	2227	2241	2254	2268	2283	2297	2310	2324
18	2065	2079	2091	2105	2119	2132	2145	2158	2172	2185
17	1937	1950	1963	1976	1988	2001	2014	2027	2039	2052
16	1818	1830	1841	1854	1866	1878	1889	1901	1914	1926
15	1706	1717	1729	1739	1750	1762	1773	1784	1795	1806
14	1599	1610	1621	1631	1642	1653	1663	1674	1684	1695
13	1498	1508	1518	1528	1538	1548	1559	1569	1578	1588
12	1403	1413	1422	1431	1441	1451	1460	1470	1479	1488
11	1312	1321	1330	1340	1349	1358	1367	1375	1385	1394
10	1228	1237	1245	1254	1262	1270	1279	1287	1296	1304
9	1148	1156	1163	1171	1179	1187	1195	1203	1211	1218
8	1073	1081	1088	1096	1103	1110	1117	1125	1133	1140
7	1002	1008	1016	1023	1030	1038	1045	1052	1059	1066
6	935	942	949	955	961	968	975	982	988	995
5	872	878	884	890	896	902	907	913	919	925
4	813	819	825	831	837	843	849	854	861	866
3 2	759 705	765 710	770 746	776 704	781	787 732	793	798	803	808
1	705 657	662	716 667	721 672	727 677	682	737 687	743 691	748 696	753 700
0	611	616	621	626	630	635	640	645	648	653
- 0	611	605	600	595	592	587	582	577	572	567
- 1	562	557	552	547	543	538	534	531	527	522
- 2	517	514	509	505	501	496	492	489	484	480
- 3	476	472	468	464	461	456	452	448	444	440
- 4	437	433	430	426	423	419	415	412	408	405
- 5	401	398	395	391	388	385	382	379	375	372
- 6	368	365	362	359	356	353	350	347	343	340
- 7	337	336	333	330	327	324	321	318	315	312
- 8	310	306	304	301	298	296	294	291	288	286
- 9	284	281	279	276	274	272	269	267	264	262
- 10	260	258	255	253	251	249	246	244	242	239
- 11	237	235	233	231	229	228	226	224	221	219
- 12	217	215	213	211	209	208	206	204	202	200
- 13	198	197	195	193	191	190	188	186	184	182
- 14	181	180	178	177	175	173	172	170	168	167
- 15	165	164	162	161	159	158	157	155	153	152
- 16	150	149	146	146	145	144	142	141	139	138
- 17	137	136	135	133	132	131	129	128	127	126
- 18	125	124	123	122	121	120	118	117	116	115
- 19	114	113	112	111	110	109	107	106	105	104
- 20	103	102	101	100	99	98	97	96	95	94

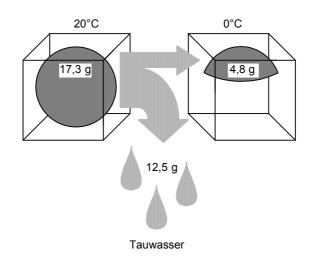


Bild 1.2: Abkühlung von 1 m³ gesättigter Luft.

Bei 22°C:
$$m_{D,max} = 19.4 \text{ g/m}^3$$

 $19.4 \cdot 4 \cdot 5 \cdot 2.6 = 1008 \text{ g}$

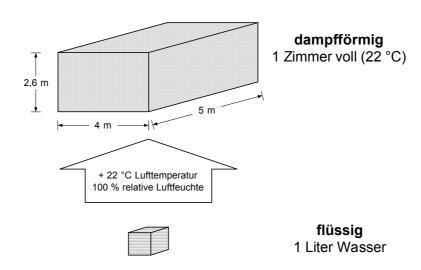


Bild 1.3: Veranschaulichung der Volumenverhältnisse flüssig/dampfförmig.

Relative Luftfeuchte
$$\varphi = p_D / p_S$$

z.B. $p_D = 702 \text{ Pa bei } 20^{\circ}\text{C} \rightarrow \varphi = 702 \text{ Pa } / 2340 \text{ Pa} = 0,3 = 30\%$

Wasserdampf kann entstehen durch:

• Verdampfen: Reiner Dampf vorhanden p_D = p_{ges}, bei 100°C und Normaldruck

• Verdunsten: Gasmenge p_D < p_{ges}

Das Ausfallen aus

- reinem Dampf heißt kondensieren
- Gasmenge heißt tauen

1.2 Wasser

Rohdichte bei 20 °C 998,2 kg/m³
$$\lambda = 0,598$$
 W/(m K)
4 °C 1000 kg/m³ 0 °C 999,8 kg/m³

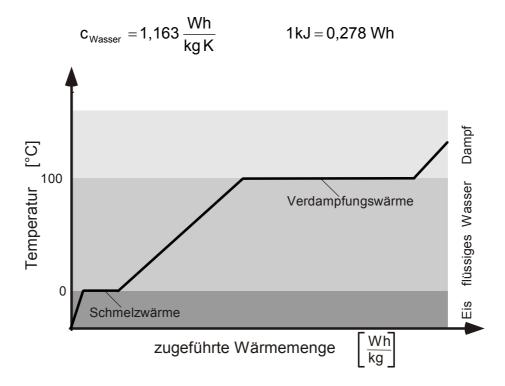


Bild 1.4: Die beim Verdunsten bzw. Tauen von Wasser umgesetzte Energiemenge.

1.3 Eis

bei 0 °C 880 - 920 kg/m³
$$\lambda$$
 = 2,23 - 2,78 W/(m K)

1.4 Schnee

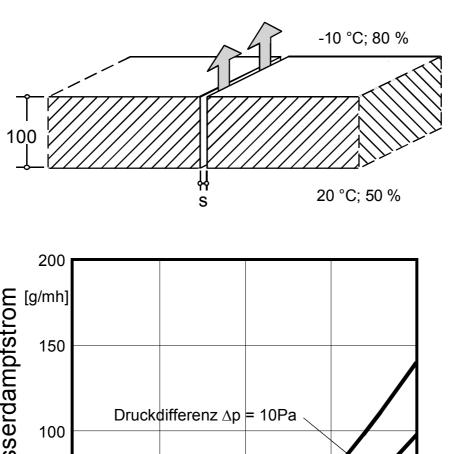
1.5 Reif

bei 0 °C 100 - 800 kg/m³
$$\lambda$$
 = 0,09 - 1,24 W/(m K)

2 Transportmechanismen

2.1 Konvektion

$$\begin{split} \dot{m}_{\text{D}} &= \dot{V} \cdot \left(C_1 - C_2 \cdot \frac{T_2}{T_1} \right) & \left[\text{kg/h} \right] \\ \text{mit} & \dot{V} & \text{Volumenstrom} & \left[\text{m}^3 \, / \text{h} \right] \\ & C & \text{Konzentration} & \left[\text{kg/m}^3 \right] \\ & T & \text{Lufttemperatur} & \left(\text{absolute Temperatur} \right) & \left[\text{K} \right] \end{split}$$


Bei Fensterlüftung:

$$\begin{split} \dot{V} &= n \cdot V_R \\ &\text{mit} \quad n \quad \text{Luftwechsel} \quad \left[h^{-1}\right] \\ &V_R \quad \text{Raumvolumen} \quad \left[m^3\right] \\ \text{z.B.:} \quad V_R &= 50 \ m^3 \quad \text{und} \quad n = 0,8 \ h^{-1} \\ &\dot{V} &= 0,8 \cdot 50 = 40 \frac{m^3}{h} \end{split}$$
 Bei
$$\theta_i = 20 \, ^\circ\text{C} \quad \text{und} \quad \phi_i = 50 \, ^\circ\text{M} \quad C_i = 8,64 \, \frac{g}{m^3} \\ \theta_e &= 0 \, ^\circ\text{C} \quad \text{und} \quad \phi_e = 80 \, ^\circ\text{M} \quad C_e = 3,87 \, \frac{g}{m^3} \end{split}$$

 $\dot{m} = 40 \frac{m^3}{h} \cdot \left(8,64 - 3,87 \cdot \frac{273,15}{293,15} \right) \frac{g}{m^3} = 201,36 \frac{g}{h}$

Bei Fugen:

$$\begin{split} \dot{V} &= a \cdot \ell \cdot \Delta p_{ges}^n \qquad n \approx 2 \, / \, 3 \\ \\ \text{mit} &\quad a \qquad \text{Fugendurchlaßkoeffizient} \quad \left[m^3 \, / \left(m \, h \, \left(da Pa \right)^{2/3} \right) \right] \\ &\quad \ell \qquad \text{Länge der Fuge} \qquad \left[m \right] \\ &\quad \Delta p_{ges} \quad \text{Gesamtdruckdifferenz} \qquad \left[Pa \right] \end{split}$$

Druckdifferenz Δp = 10Pa

5Pa

5Pa

100

5Pa

1Pa

1,5 [mm] 2

Spaltbreite s

Bild 2.1: Spezifischer Wasserdampfstrom in Abhängigkeit von der Spaltbreite und der wirksamen Druckdifferenz bei einer Bauteildicke von 100 mm.

2.2 Diffusion

Diffusion ist die Mischung zweier Stoffe ohne äußere Kräfte, im Bauwesen ein Wasserdampftransport.

Ähnlich wie Wärme immer von der warmen zur kalten Seite wandert, findet zwischen Bereichen unterschiedlicher Luftfeuchte eine Wasserdampfwanderung statt (Wasserdampfdiffusion).

Temperatur, Luftdruck und relative Luftfeuchte beeinflussen die Geschwindigkeit der Diffusion und damit die Mengen des diffundierenden Dampfes.

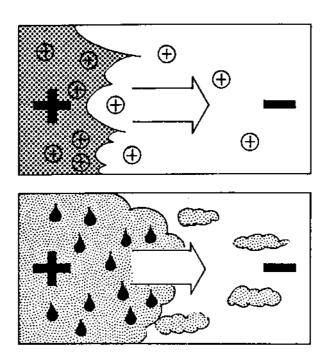


Bild 2.2: Schematische Darstellung von Wärme- und Feuchtetransport.

Für die Vorgänge der Diffusion haben wir im Gegensatz zum Transport von flüssigem Wasser kein "Auge".

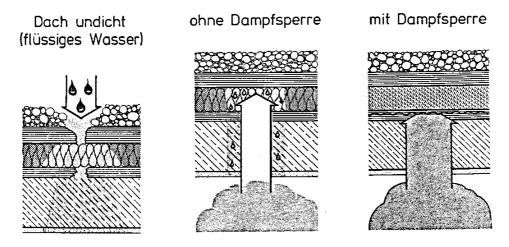


Bild 2.3: Transport von flüssigem und dampfförmigem Wasser durch ein Bauteil.

Thermisch - hygrische Analogie

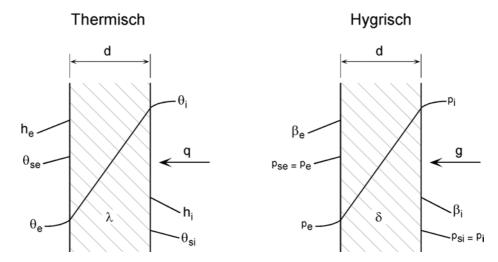


Bild 2.4: Gegenüberstellung der Einflussgrößen auf den Wärmetransport infolge Leitung bzw. auf den Feuchtetransport infolge Diffusion durch ein Außenbauteil (eindimensionale stationäre Betrachtung).

$$\Delta \theta \quad \Rightarrow \quad \Delta p$$
 $q \quad \Rightarrow \quad q$

Tabelle 2.1: Symbole, Bezeichnung und Einheit der Einflussgrößen bei der thermisch-hygrischen Analogie.

Thermisc	h		Hygrisch			
Symbol	Bezeichnung	Einheit	Symbol	Bezeichnung	Einheit	
θ	Temperatur	°C	Р	Partialdruck des Wasserdampfes	Ра	
h	Wärmeübergangs- koeffizient	W/(m ² K)	β	Stoffübergangskoeffizient	kg/(m² h Pa)	
λ	Wärmeleitfähigkeit	W/(m K)	δ	Wasserdampf- Diffusionsleitkoeffizient	kg/(m h Pa)	
$R = \sum \frac{d}{\lambda}$	Wärmedurchlass- widerstand	(m ² K)/W	$Z = \sum \frac{d}{\delta}$	Wasserdampf-Diffusions- durchlasswiderstand	m ² h Pa/kg	
q	Wärmestromdichte	W/m ²	g	Wasserdampf-Diffusions- Stromdichte	kg/(m ² h)	

$$q = \frac{\theta_i - \theta_e}{\frac{1}{h_i} + R + \frac{1}{h_e}}$$

$$g = \frac{p_i - p_e}{\frac{1}{\beta_i} + Z + \frac{1}{\beta_e}}$$

Wasserdampf-Diffusionswiderstandszahl μ

$$\mu = \frac{Z_M}{Z_L} = \frac{\frac{d_M}{\delta_M}}{\frac{d_L}{\delta_L}} = \frac{\delta_L}{\delta_M} \qquad \qquad \left[-\right] \qquad \text{mit } d_M = d_L$$

 μ gibt an, um wieviel mal größer der Diffusionswiderstand einer Stoffschicht gegenüber einer gleichdicken Luftschicht ist.

$$Z_{M} = \frac{d_{M}}{\delta_{M}} = \frac{d_{M} \cdot \mu_{M}}{\delta_{I}} = \frac{1}{\delta_{I}} \cdot (\mu \cdot d)_{M}$$

Wasserdampf-diffusionsäquivalente Luftschichtdicke oder Sperrwert s_d

$$\begin{split} s_{\text{d}} &= \mu \cdot \text{d} & \text{[m]} \\ &1/\delta_{\text{L}} \approx 1,5 \cdot 10^6 \text{ (m h Pa)/kg} & \delta_{\text{L}} = \text{D / (R}_{\text{D}} \cdot \text{T)} \\ &\text{D} & \text{Diffusionskoeffizient} = \text{f (p}_{\text{ges}} \text{ , T)} \end{split}$$

gemäß DIN 4108-3 wird

- eine Bauteilschicht mit s_d ≤ 0,5 m als **diffusionsoffen**e Schicht
- eine Bauteilschicht mit 0,5 m < s_{d} < 1500 m als $\mbox{diffusionshemmend}\mbox{e}$ Schicht
- eine Bauteilschicht mit $s_d \ge 1500$ m als **diffusionsdicht**e Schicht bezeichnet.

Da $1/\beta_i$ und $1/\beta_e \ll Z$ gilt

$$g = \frac{p_i - p_e}{Z} = \frac{p_i - p_e}{1,5 \cdot 10^6 \cdot \sum \mu \cdot d}$$

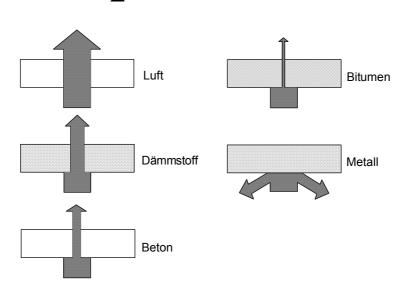


Bild 2.5: Schematische Darstellung der Diffusionswiderstände unterschiedlicher Materialien.

Tabelle 2.2: Richtwerte der Wasserdampfdiffusionswiderstandszahlen von Bau- und Dämmstoffen nach DIN 4108, Teil 4.

Stoff	Richtwerte der Wasserdampfdiffusions- widerstandszahl μ
Putze, Mörtel, Estriche	
Kalkmörtel, Kalkzementmörtel, Zementmörtel, Zementestrich	15 / 35
Gipsmörtel, Kalkgipsmörtel, Gipsputz	10
wärmedämmender Putz	5 / 20
Kunstharzputz	50 / 200
Betone	
Normalbeton, Leichtbeton und Stahlleichtbeton mit geschlossenem Gefüge	70 / 150
Dampfgehärteter Porenbeton nach DIN 4223, Leichtbeton haufwerksporig mit nichtporigen Zuschlägen, je nach Rohdichte	3/10 bis 5 / 10
Leichtbeton haufwerksporig mit porigen Zuschlägen	5 / 15
Bauplatten	
Porenbeton-, Leichtbeton-, Gipsbauplatten	5 / 10
Gipskartonplatten	8
Mauerwerk	
Mauerziegel-, Porenbetonblockstein-, Leichtbetonvoll-, -loch- und Hohlblockstein, Kalksandsteinmauerwerk, je nach Rohdichte	5 / 10 bis 15/25
Vollklinker-, Hochlochklinkermauerwerk	50 / 100
Hüttensteinmauerwerk	70 / 100
Wärmedämmstoffe	2.15
Holzwolle-Leichtbauplatten	2/5
Korkdämmstoffe	5 / 10
Schaumkunststoffe: Polystyrol-Partikelschaum, je nach Rohdichte	20 / 50 bis 40 / 100
Polystyrol-Extruderschaum	80 / 250
Polyurethan-Hartschaum	30 / 100
Phenolharz-Hartschaum	10 / 50
Mineralische und pflanzliche Faserdämmstoffe	
Schaumglas n. DIN 18174 Holz- und Holzwerkstoffe	praktisch dampfdicht
Holz aller Art	40
Sperrholz	50 / 400
Holzspan-Flachpressplatten	50 / 100
Holzspan-Strangpressplatten	20
harte Holzfaserplatten	70
poröse Holzfaserplatten	5
Abdichtungsstoffe und Abdichtungsbahnen	Ŭ
Asphaltmastix, Dicke ≥ 7 mm	praktisch dampfdicht
Bitumendachbahnen n. DIN 52128	10.000 / 80.000
nackte Bitumenbahnen n. DIN 52129	2.000 / 20.000
Glasvliesbitumendachbahnen n. DIN 52143	20.000 / 60.000
Kunststoff-Dachbahnen nach DIN 16730, PVC-P	10.000 / 30.000
DIN 16731, PIB	400.000 / 1.750.000
DIN 16729, ECB, 2,0 K	50.000 / 75.000
DIN 16729, ECB, 2,0	70.000 / 90.000
PVC-Folien, Dicke ≥ 0,1 mm	20.000 – 50.000
Polyethylenfolien, Dicke ≥ 0,1 mm	100.000
Aluminium-Folien, Dicke ≥ 0,05 mm	praktisch dampfdicht
andere Metallfolien, Dicke ≥ 0,1 mm	praktisch dampfdicht
Sonstige Stoffe	
Mosaik aus Glas und Keramik	100 / 300

Anstrich	Diffusionsäquivalente Luftschichtdicke		
	$s_d = \mu \cdot d$		
	[m]		
Chlorkautschuklacke	2,5 bis 8,3		
Polyvinylchloridlacke	2,6 bis 5,1		
Öl-Lacke	2,1 bis 2,9		
Ölfarben	1,0 bis 2,6		
Binderfarben: ölfrei	0,06 bis 0,5		
ölhaltig	0,03 bis 0,04		
Leimfarben	0,03 bis 0,04		
Mineralfarben	ca. 0,04		
Kalkanstriche	ca. 0,03		

Tabelle 2.3: Diffusionsäquivalente Luftschichtdicken s_d von Anstrichen.

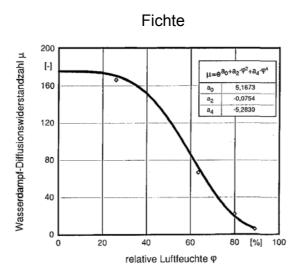


Bild 2.6: Verlauf der Wasserdampf-Diffusionswiderstandszahl μ in Abhängigkeit von der relativen Luftfeuchte.

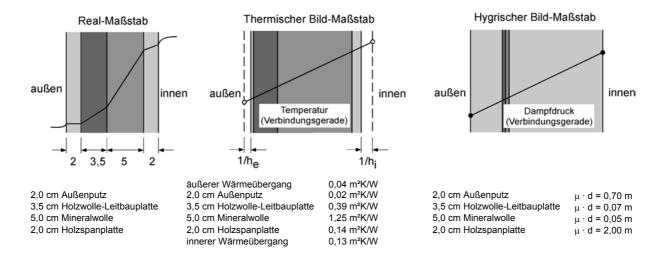


Bild 2.7: Querschnitt einer mehrschichtigen Außenwand (Beispiel) - <u>Links:</u> im Realmaßstab, <u>Mitte:</u> im thermischen Maßstab, <u>Rechts:</u> im hygrischen Maßstab.

 Der tatsächliche Dampfdruck kann nie größer werden als der Sättigungsdampfdruck, welcher der örtlichen Wandtemperatur zugeordnet ist; es muss also folgende Bedingung erfüllt sein:

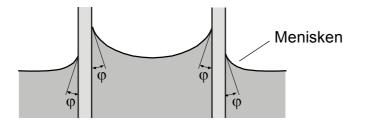
$$p \le p_s$$

2. Die Diffusionsstromdichte kann im Beharrungszustand längs des Diffusionsweges konstant bleiben oder abnehmen, aber nie größer werden, sofern in der Wand keine Feuchtigkeitsquellen vorhanden sind; demzufolge muss sein:

$$\frac{d^2 p}{d x^2} \ge 0$$

3. Solange der tatsächliche Dampfdruck kleiner als der örtliche Sättigungsdampfdruck ist, muss die Diffusionsstromdichte konstant bleiben; es folgt somit:

$$p < p_s$$
 : $\frac{d p}{d x} = c$


2.3 Kapillarleitung

Viele Baustoffe enthalten Poren, die sich in ihrer Struktur und Größe stark unterscheiden können. Da die Wassermoleküle kleiner als diese Poren sind, findet dort ein Flüssigkeitstransport statt. Ursache und treibende Kraft ist die Kapillarwirkung.

Oberflächenspannung (Tropfenform): Auf jedes Molekül einer Flüssigkeit wirken von seiner Umgebung her anziehende Kräfte, wobei sich der Wirkungsbereich dieser Kräfte auf eine Kugel von etwa 10⁻⁶ cm Radius um das Molekül herum beschränkt. An Oberflächen und Begrenzungen treten Störungen dieses Kräftegleichgewichts auf, es kommt zu Kapillaritätserscheinungen.

Aszension

Oberfläche ist benetzbar = hydrophil = (wasserfreundlich) z.B. Glas

Randwinkel φ < 90°

Bild 2.8: Hydrophile Kapillare.

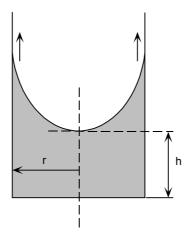


Bild 2.9: Kapillarität ist eine Folge der Oberflächenspannung σ . Bei vollständiger Benetzung gilt $\sigma \cdot 2 \cdot \pi \cdot r = \pi \cdot r^2 \cdot \rho_w \cdot g$ Steighöhe $h = 2 \cdot \sigma / (r \cdot \rho_w \cdot g)$ $\sigma = 0,073$ N/m bei 20 °C.

Depression

Oberfläche ist wasserabweisend = hydrophob = (wasserfliehend) z.B. Silikonfett

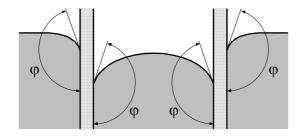


Bild 2.10: Hydrophobe Kapillare.

Randwinkel $\varphi > 90^{\circ}$

Wassertropfen auf Festkörperoberfläche

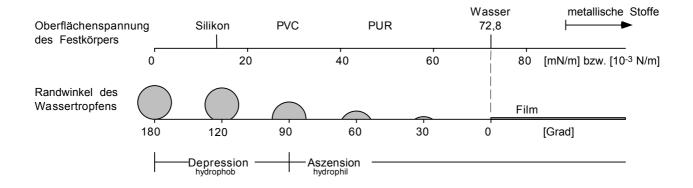


Bild 2.11: Wassertropfen auf Festkörperoberfläche.

3 Befeuchtungs- und Trocknungsvorgänge

Die Aufnahme von Wasser erfolgt wesentlich schneller als dessen Abgabe bei Trocknungsvorgängen.

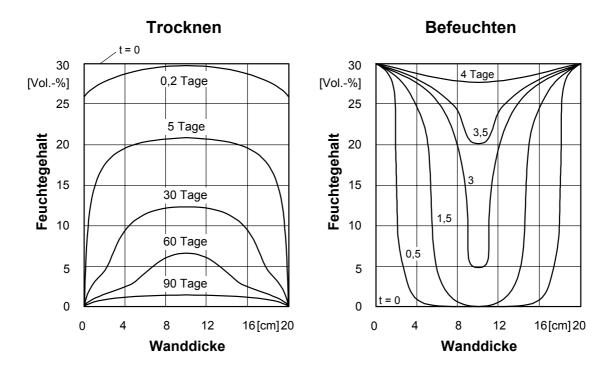
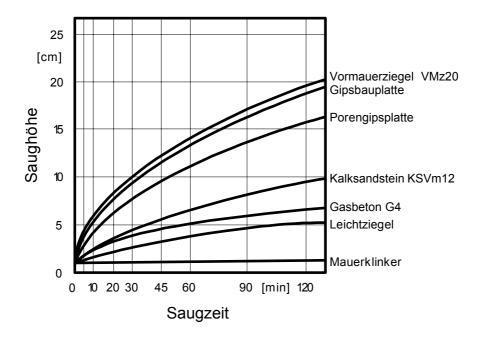


Bild 3.1: Verteilung des Feuchtegehalts über den Querschnitt eines 20 cm dicken Leichtbetonbauteils zu verschiedenen Zeitpunkten eines Trocknungs- bzw. Befeuchtungsprozesses.

links: Trocknung; das Bauteil gibt das Wasser nach beiden Seiten in die umgebende Luft ab; hierzu werden ca. 90 Tage benötigt.

rechts: Befeuchtung; das Bauteil wird beidseitig beregnet; der Befeuchtungsprozess dauert nur ca. 4 Tage.

4 Wasseraufnahme


Die Wasseraufnahme mw bei Beregnungs- und Saugvorgängen ergibt sich aus

$$\begin{split} m_W &= w \cdot \sqrt{t} & \left[kg \, / \, m^2 \right] \\ mit & w & Wasseraufnahmekoeffizient & \left[kg \, / \left(m^2 \, \, h^{1/2} \right) \right] \\ & t & Zeit & \left[h \right] \end{split}$$

Tabelle 4.1: Wasseraufnahmekoeffizient w für verschiedene Baustoffe, Beschichtungen und Anstriche.

Material	Rohdichte	w
	kg/m ³	kg/(m ² h ^{0,5})
Baustoffe		
Vollziegel	1750 2175	25,1 2,9
Hochlochziegel	1155 1165	8,3 8,9
Kalksandstein	1635 1760 1795 1880 1920	7,7 5,5 5,4 3,2 3,2
Normalbeton	2290 2410	1,8 1,1
Bimsbeton	845 1085	2,9 1,9
Gasbeton	630 600 530 620 640	4,6 4,2 4,0 6,5 7,7
Gipsbauplatte	900 600	69 38
Weißkalkputz		7,0
Kalkzementputz		2,0 4,0
Zementputz		2,0 3,0
Kunststoffdisper- sionsbeschichtung		0,05 0,2
Silikonisierte Baustoffoberfläche		0,01 - 0,1

••	
Material	W
	$10^{-3} \cdot \text{kg/(m}^2 \text{h}^{0,5})$
organische Polymere	
Methylcellulose	114,00
Polyvinylacetat	3,24
Leinölalkyd	1,14
Polyurethan	1,14
Chlorkautschuk	0,32
Leinölfirnis PVK = 0 % 10 % 18 % 25 %	6,60 2,88 2,76 2,64
Epoxidharz PVK = 0 % 12 % 23 % 30 %	0,58 0,46 0,45 0,33
Bitumen PVK = 0 % 34 % 46 % 61 %	0,012 0,34 0,37 0,53
Oberflächenbehandlung	
Dispersionsschichtung auf Gasbeton	60 - 180
Hölzer, Spanplatten, Hart- faserplatten (unbehandelt)	> 5
Kalkzementputz mit Leim- farbe bzw. Tapete	20 - 24
Zementbeton mit Spach- telputz und Tapete	8 - 10
Zementbeton mit Dispersionsanstrich	~ 5
Abwaschbare Tapete auf Innenputz	1 - 4
Kunstharzbeschichtungen	0,5 - 2
Bautenschutzanstriche	0,01 - 7

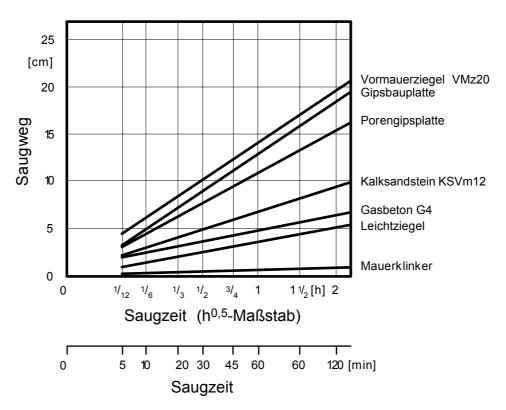


Bild 4.1: Beispiele zum Ergebnis eines Versuchs zur Sauggeschwindigkeit. oben: Linearer Maßstab der Saugzeit.

<u>unten:</u> Die gleichen 7 Beispiele wie oben, hier aber die Saugzeit im Quadratwurzel-Maßstab aufgezeichnet. Die Wassereindringkoeffizienten der 7 Steinsorten sind:

cm/h^{0,5} Vormauerziegel Vmz20 v = cm/h^{0,5} Gipsbauplatte v = 13 cm/h^{0,5} Porengipsplatte v = 11 cm/h^{0,5} Kalksandstein KSVm12 v = 6,5 cm/h^{0,5} Gasbetonstein G4 v = 5 cm/h^{0,5} Leichtziegel 3,5 cm/h^{0,5} Mauerklinker 0,5

5 Gleichgewichtsfeuchte von Baustoffen

Baustoffe sind auch dann, wenn die Neubaufeuchte schon lange entwichen ist, nicht absolut trocken. Je nach relativer Feuchte und Temperatur der Umgebungsluft stellt sich eine sogenannte Gleichgewichtsfeuchte ein.

5.1 Kennzeichnung

Zur Kennzeichnung des Wassergehalts dienen der

massebezogene Wassergehalt u_m

u _m =	$= (m_f - m_t)/m_t \cdot 100 \%$	[%]
m_{f}	Masse des feuchten Stoffes	[kg]

m_t Masse des trockenen Stoffes [kg]

volumenbezogene Feuchte u_V

$$u_V = u_{m} \cdot (\rho_S/\rho_W)$$
 [%]
 ρ_S Rohdichte des Stoffes [kg/m³]
 ρ_W Rohdichte von Wasser = 1000 kg/m³ [kg/m³]

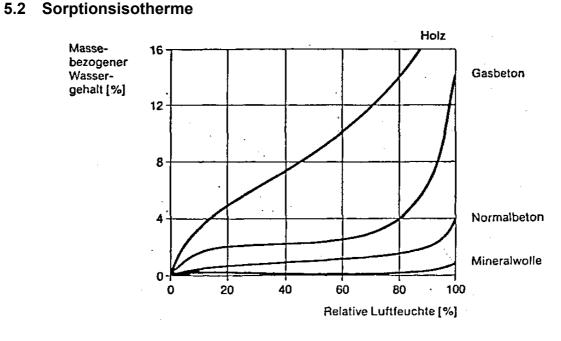


Bild 5.1: Sorptionsisotherme einiger Baustoffe.

5.3 Praktischer Feuchtegehalt

Zur Bestimmung des praktischen Feuchtegehalts eines Baustoffes: Summenhäufigkeit des volumenbezogenen Feuchtegehalts von Gasbetonaußenwänden aufgrund von 45 Einzelmesswerten von Wohngebäuden (nach Künzel).

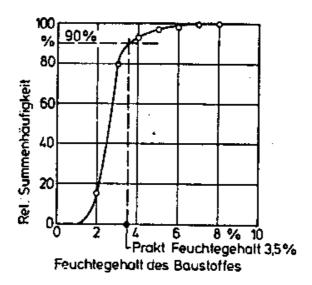


Bild 5.2: Ermittlung des praktischen Feuchtegehalts.

Tabelle 5.1: Praktischer Feuchtegehalt von Baustoffen nach DIN 4108, Teil 4.

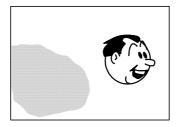
Stoff	Praktischer Feuchtegehalt ¹⁾			
	volumenbezogen ²⁾	massebezogen		
	u _v [%]	u _m [%]		
Ziegel	1,5	-		
Kalksandsteine	5	-		
Beton mit geschlossenem Gefüge mit dichten Zuschlägen	5	-		
Beton mit geschlossenem Gefüge mit porigen Zuschlägen	15	-		
Leichtbeton mit haufwerksporigem Gefüge mit dichten Zuschlägen nach DIN 4226 Teil 1	5	-		
Leichtbeton mit haufwerksporigem Gefüge mit porigen Zuschlägen nach DIN 4226 Teil 2	4	-		
Gasbeton	3,5	-		
Gips, Anhydrit	2	-		
Gußasphalt, Asphaltmastix	~ 0	~ 0		
Anorganische Stoffe in loser Schüttung, expadiertes Gesteinsglas	-	5		
Mineralische Faserdämmstoffe	-	1,5		
Schaumglas	~ 0	~ 0		
Holz, Spanplatten u. dgl., organische Faserdämmstoffe	-	15		
Pflanzliche Faserdämmstoffe	-	15		
Korkdämmstoffe	-	10		
Schaumkunststoffe aus Polystyrol, Polyurethan (hart)	-	5		

¹⁾Unter praktischem Feuchtegehalt versteht man den Feuchtegehalt, der bei der Untersuchung genügend ausgetrockneter Bauten, die zum dauernden Aufenthalt von Menschen dienen, in 90 % aller Fälle nicht überschritten wurde.

²⁾Der volumenbezogene Feuchtegehalt bezieht sich auch bei Lochsteinen, Hohldielen oder sonstigen Bauelementen mit Lufthohlräumen immer auf das Material ohne diese Hohlräume.

6 Feuchteschutz im Hochbau

6.1 Zweck des Feuchteschutzes

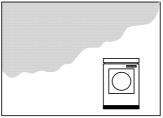

Vermeidung bzw. Limitierung von Tauwasserbildung an Bauteiloberflächen und in Bauteilen, damit

- keine Feuchteflecken mit Schimmel- oder Pilzbefall entstehen,
- der Wärmeschutz nicht beeinträchtigt wird
- die Konstruktion keinen Schaden nimmt.

6.2 Feuchtebilanz der Raumluft

6.2.1 Wasserdampfproduktion

In bewohnten Gebäuden wird ständig Wasserdampf produziert:



In bewohnten Gebäuden wird ständig Wasserdampf erzeugt.

 Die Atemluft eines Menschen kann je Tag zwischen 1 und 2 I Wasser in Form von Wasserdampf enthalten.

 Durch Kochen können in einem 2-Personen-Haushalt täglich bis zu 2 I Wasser in Form von Wasserdampf anfallen.

 Durch Baden, Waschen der Wäsche usw. enstehen in einem 4-Personen-Haushalt durchschnittlich bis zu 3 I Wasser in Form von Wasserdampf pro Tag.

Bild 6.1: Wasserdampfproduktion in Wohngebäuden.

Tabelle 6.1: Wasserdampfabgabe in Wohnungen.

Menschen						
- leichte Aktivität	30	-	60	g/Stunde		
- mittelschwere Arbeit	120	-	200	g/Stunde		
- schwere Arbeit	200	-	300	g/Stunde		
Bad						
- Wannenbad		ca.	700	g/Stunde		
- Duschen		ca.	2600	g/Stunde		
Küche						
- Koch- u. Arbeitsvorgänge	600	-	1500	g/Stunde		
- im Tagesmittel			100	g/Stunde		
Zimmerblumen						
- z.B. Veilchen (Viola)	5	-	10	g/Stunde		
Topfpflanzen						
- z.B. Farn (Comptonia asplemifolia)	7	-	15	g/Stunde		
- Mittelgroßer Gummibaum (Ficus elastica)	10	-	20	g/Stunde		
- Wasserpflanzen z.B. Seerose (Nymphea alba)	6	-	8	g/Stunde		
- Freie Wasseroberfläche		ca.	40	g/(m² h)		
- Jungbäume (2 bis 3 m) z.B. Buche (Fagus)	2	-	4	kg/Stunde		
Trocknende Wäsche (4,5 kg-Tro	mmel)					
- geschleudert	50	-	200	g/Stunde		
- tropfnass	100	-	500	g/Stunde		

6.2.2 Feuchteabfuhr durch Lüften

$$\begin{split} \dot{m}_{\text{D}} &= \dot{V} \cdot \! \left(C_{\text{D,innen}} - C_{\text{D,außen}} \cdot \! \frac{T_{\text{außen}}}{T_{\text{innen}}} \right) \qquad \left[kg/h \right] \\ z.B. \quad \theta_i &= 22 \, ^{\circ} C \qquad \phi_i = 50 \, \% \\ \quad \theta_e &= 0 \, ^{\circ} C \qquad \phi_e = 90 \, \% \\ \quad T_{\text{innen}} &= 295,\!15 \, K \quad C_{\text{D,innen}} = \! 19,\! 4 \cdot \! 0,\! 5 \! = \! 9,\! 7 \, \frac{g}{m^3} \\ \quad T_{\text{außen}} &= 273,\! 15 \, K \quad C_{\text{D,außen}} = \! 4,\! 84 \cdot \! 0,\! 9 \! = \! 4,\! 36 \, \frac{g}{m^3} \end{split}$$

Pro Stunde ausgetauschtes Luftvolume n $\dot{V} = 40 \, m^3 \, / h$

$$\dot{m} = 40 \cdot \left(9.7 - 4.36 \cdot \frac{273.15}{295.15}\right) = 226.6 \text{ g/h}$$

6.2.3 Feuchteabfuhr durch Diffusion

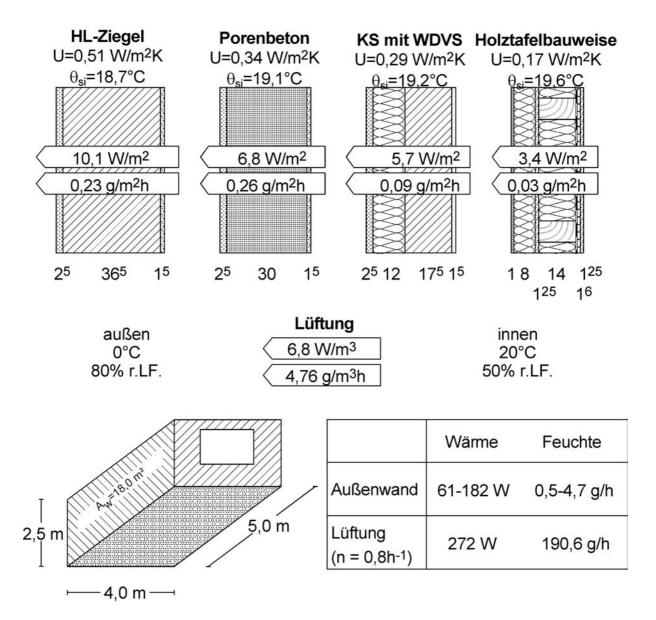


Bild 6.2: Vergleich der Wirkung der Feuchtetransportmechanismen Diffusion und Konvektion.

6.2.4 Sorption

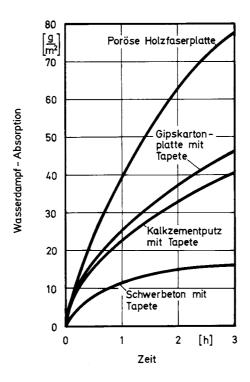


Bild 6.3: Wasserdampfabsorption aufgetragen über der Zeit für verschiedene Bauteile bzw. Materialien.

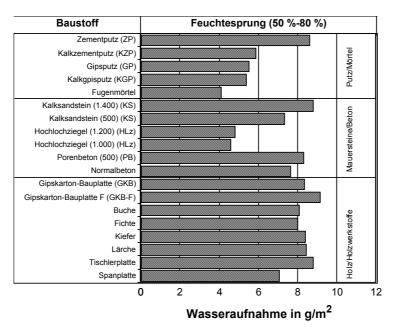


Bild 6.4: Wasserdampfaufnahme üblicher Baustoffe beim Zyklus "Feuchtesprung".

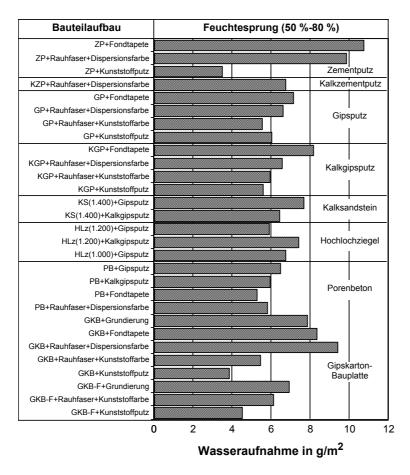


Bild 6.5: Wasserdampfaufnahme üblicher Bauteile beim Zyklus "Feuchtesprung".

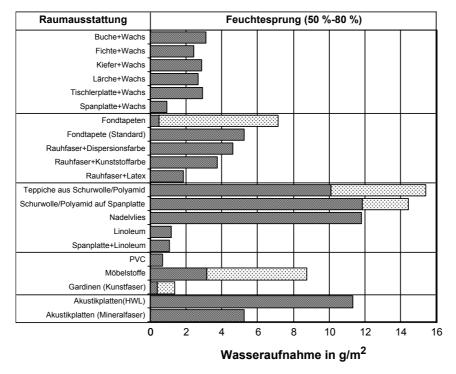


Bild 6.6: Wasserdampfaufnahme von Materialien der Raumausstattung beim Zyklus "Feuchtesprung".

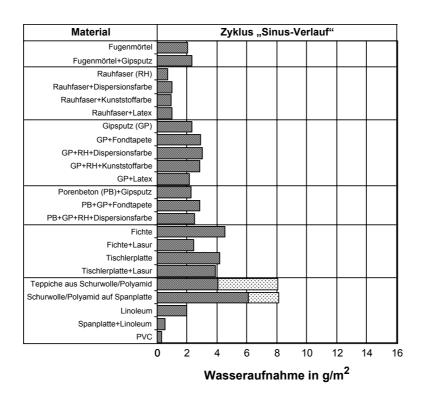


Bild 6.7: Wasserdampfaufnahme ausgewählter Materialien beim Zyklus "Sinus-Verlauf".

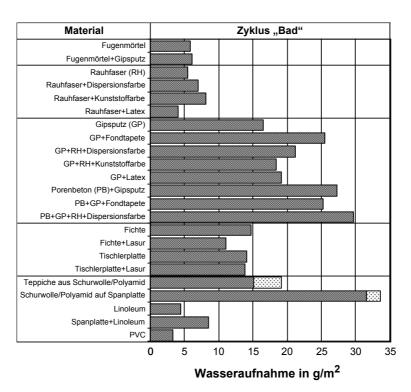


Bild 6.8: Wasserdampfaufnahme ausgewählter Materialien beim Zyklus "Bad".

6.2.5 Raumluftfeuchte

Die relative Raumluftfeuchte φ_i erhält man aus

$$\phi_i = \phi_e \cdot \frac{p_{Se}}{p_{Si}} + \frac{m_i \cdot T_i}{n \cdot V_i \cdot p_{Si}} \cdot \left(R_D - \frac{R_L \cdot \phi_e \cdot p_{Se}}{p_{ges}} \right)$$

ϕ_{i}	Relative Feuchte der Raumluft	[-]
φa	Relative Feuchte der Außenluft	[-]
\dot{m}_{i}	Feuchteproduktion im Raum	[kg/h]
p_Se	Sättigungsdampfdruck der Außenluft	[Pa]
p_{Si}	Sättigungsdampfdruck der Raumluft	[Pa]
p_{ges}	Gesamtdruck	[Pa]
T_i	Lufttemperatur im Raum	[K]
V_i	Luftvolumen des Raumes	[m ³]
n	Luftwechselzahl des Raumes	[h ⁻¹]
R_L	Gaskonstante Luft	287 Pa m ³ /(kg K)
R_D	Gaskonstante Wasserdampf	462 Pa m ³ /(kg K)
	φ _a m _i p _{Se} p _{Si} p _{ges} T _i V _i n R _L	 φ_a Relative Feuchte der Außenluft m_i Feuchteproduktion im Raum p_{Se} Sättigungsdampfdruck der Außenluft p_{Si} Sättigungsdampfdruck der Raumluft p_{ges} Gesamtdruck T_i Lufttemperatur im Raum V_i Luftvolumen des Raumes n Luftwechselzahl des Raumes R_L Gaskonstante Luft

Für praktische Berechnungen kann $\phi_e \cdot p_{Se}/p_{ges}$ zu 0 gesetzt werden und es ergibt sich die Formel

$$\phi_i = \phi_e \cdot \frac{p_{Se}}{p_{Si}} + \frac{m_i \cdot R_D \cdot T_i}{n \cdot V_i \cdot p_{Si}}$$

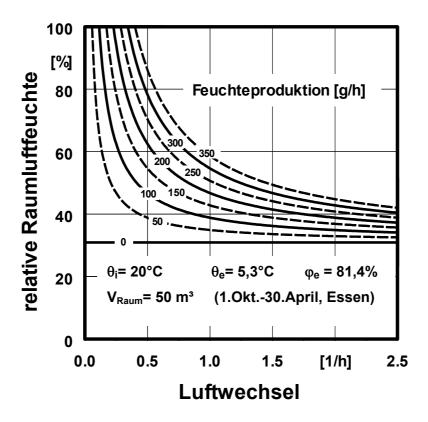


Bild 6.9: Relative καμπιμπτεμοπτε in Apnangigkeit von Luπwecnsei und reucnteproduktion.

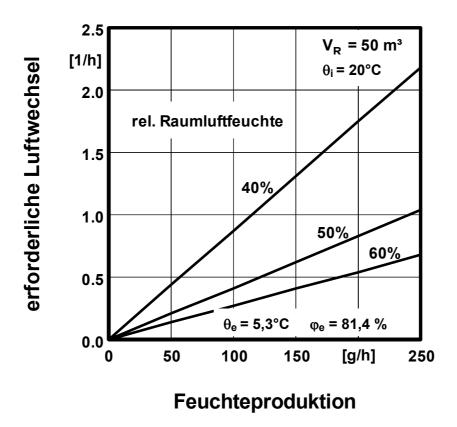


Bild 6.10: Erforderlicher Luftwechsel in Abhängigkeit von Feuchteproduktion und rel. Raumluftfeuchte.

6.2.6 Lüftungssysteme

6.2.6.1 Natürliche Lüftung

Tabelle 6.2: Luftwechsel bei verschiedenen Fensterstellungen.

Fensterstellung	Luftwechsel			
	[h ⁻¹]			
Fenster zu, Türen zu	0 - 0,5			
Fenster gekippt, Rollladen zu	0,3 - 1,5			
Fenster gekippt, kein Rollladen	0,8 - 4,0			
Fenster halb offen	5 - 10			
Fenster ganz offen	9 - 15			
Fenster und Fenstertüren ganz offen (gegenüberliegend)	etwa 40			

6.2.6.2 Mechanische Lüftung

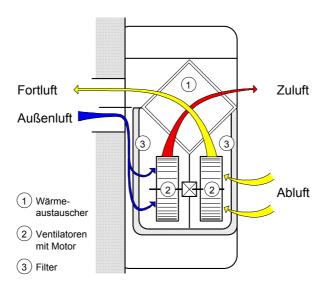


Bild 6.11: Einzelraumlüftungsgerät mit Wärmerückgewinnung.

(Quelle: RWE Energie Bau-Handbuch, 12. Ausgabe)

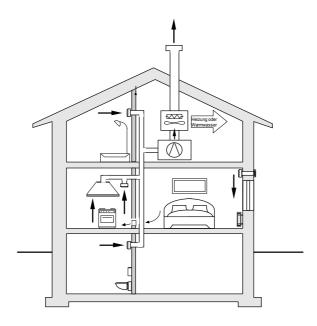


Bild 6.12: Schematischer Aufbau einer zentralen Abluftanlage mit Wärmerückgewinnung mittels Wärmepumpe.

(Quelle: GRE-Broschüre "Heizenergieeinsparung im Gebäudebestand")

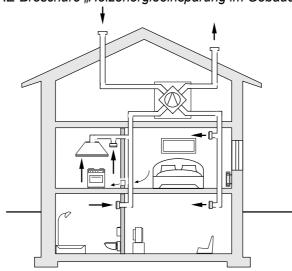


Bild 6.13: Schematischer Aufbau einer zentralen Zu-/Abluftanlage mit Wärmerückgewinnung mittels Kreuzwärmetauscher.

(Quelle: GRE-Broschüre "Heizenergieeinsparung im Gebäudebestand")

6.3 Tauwasserbildung auf Bauteiloberflächen

An Bauteiloberflächen entsteht Tauwasser, sobald der Sättigungsdampfdruck der Oberflächentemperatur unter dem Wasserdampfdruck der Raumluft sinkt.

$$p_{S,\theta_{si}} \le p_{S,\theta_i} \cdot \phi$$
 mit der rel. Luftfeuchte $\phi = \frac{p}{p_S}$

6.3.1 Taupunkttemperatur

Die Oberflächentemperatur, bei deren Unterschreitung Tauwasserbildung eintritt, heißt Taupunkttemperatur. Sie hängt von der Feuchte und der Temperatur der Raumluft ab.

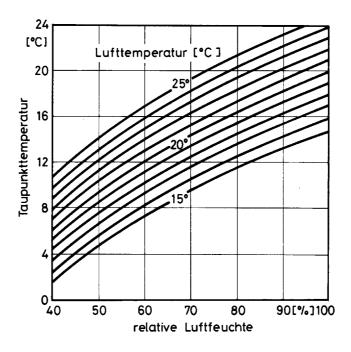


Bild 6.14: Taupunkttemperatur in Abhängigkeit von relativer Luftfeuchte und Lufttemperatur.

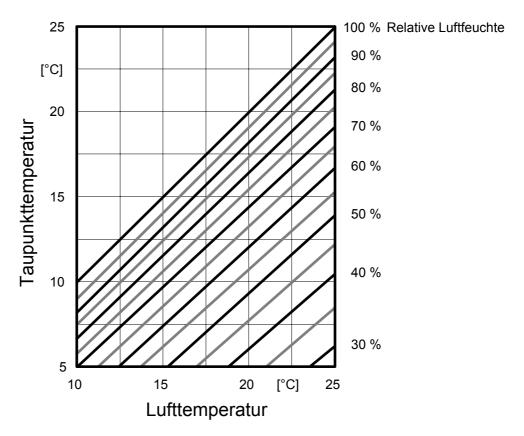


Bild 6.15: Taupunkttemperatur in Abhängigkeit von Lufttemperatur und relativer Luftfeuchte.

Tabelle 6.3: Taupunkttemperatur θ_S der Luft in Abhängigkeit von Temperatur und relativer Feuchte der Luft.

Lufttem- peratur θ	Taupunkttemperatur $\theta_s^{-1)}$ in °C bei einer relativen Luftfeuchte von:													
°C	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%
30	10.5	12,9	14,9	16,8	18,4	20,0	21,4	22,7	23,9	25,1	26,2	27,2	28,2	29,1
29	9,7	12,0	14,0	15,9	17,5	19,0	20,4	21,7	23,0	24,1	25,2	26,2	27,2	28,1
28	8,8	11,1	13,1	15,0	16,6	18,1	19,5	20,8	22,0	23,2	24,2	25,2	26,2	27,1
27	8,0	10,2	12,2	14,1	15,7	17,2	18,6	19,9	21,1	22,2	23,3	24,3	25,2	26,1
26	7,1	9,4	11,4	13,2	14,8	16,3	17,6	18,9	20,1	21,2	22,3	23,3	24,2	25,1
25	6,2	8,5	10,5	12,2	13,9	15,3	16,7	18,0	19,1	20,3	21,3	22,3	23,2	24,1
24	5,4	7,6	9,6	11,3	12,9	14,4	15,8	17,0	18,2	19,3	20,3	21,3	22,3	23,1
23	4,5	6,7	8,7	10,4	12,0	13,5	14,8	16,1	17,2	18,3	19,4	20,3	21,3	22,2
22	3,6	5,9	7,8	9,5	11,1	12,5	13,9	15,1	16,3	17,4	18,4	19,4	20,3	21,2
21	2,8	5,0	6,9	8,6	10,2	11,6	12,9	14,2	15,3	16,4	17,4	18,4	19,3	20,2
20	1,9	4,1	6,0	7,7	9,3	10,7	12,0	13,2	14,4	15,4	16,4	17,4	18,3	19,2
19	1,0	3,2	5,1	6,8	8,3	9,8	11,1	12,3	13,4	14,5	15,5	16,4	17,3	18,2
18	0,2	2,3	4,2	5,9	7,4	8,8	10,1	11,3	12,5	13,5	14,5	15,4	16,3	17,2
17	-0,6	1,4	3,3	5,0	6,5	7,9	9,2	10,4	11,5	12,5	13,5	14,5	15,3	16,2
16	-1,4	0,5	2,4	4,1	5,6	7,0	8,2	9,4	10,5	11,6	12,6	13,5	14,4	15,2
15	-2,2	-0,3	1,5	3,2	4,7	6,1	7,3	8,5	9,6	10,6	11,6	12,5	13,4	14,2
14	-2,9	-1,0	0,6	2,3	3,7	5,1	6,4	7,5	8,6	9,6	10,6	11,5	12,4	13,2
13	-3,9	-1,9	-0,1	1,3	2,8	4,2	5,5	6,6	7,7	8,7	9,6	10,5	11,4	12,2
12	-4,5	-2,6	-1,0	0,4	1,9	3,2	4,5	5,7	6,7	7,7	8,7	9,6	10,4	11,2
11	-5,2	-3,4	-1,8	-0,4	1,0	2,3	3,5	4,7	5,8	6,7	7,7	8,6	9,4	10,2
10	-6,0	-4,2	-2,6	-1,2	0,1	1,4	2,6	3,7	4,8	5,8	6,7	7,6	8,4	9,2
1) Näherung	gsweis	e darf	gradlin	ig inte	rpolier	t werde	en.							

Deshalb ist die Kenntnis der innerseitigen Oberflächentemperatur notwendig.

6.3.2 Oberflächentemperaturen

$$\theta_{si} = \theta_i - q \cdot \frac{1}{h_i} = \theta_i - \frac{\theta_i - \theta_e}{h_i \cdot \left(\frac{1}{h_i} + R + \frac{1}{h_e}\right)}$$

Dabei ist h_i = 4 W/(m^2 K) zu wählen. Hierdurch werden ungünstige Einbausituationen berücksichtigt und die ermittelten Oberflächentemperaturen liegen so auf der "sicheren Seite".

Die Verwendung des U-Wertes zur Bestimmung von θ_{si} führt deshalb leicht zu Fehlern.

Besonders gefährdet sind Bereiche von Wärmebrücken, wo im allgemeinen die tiefsten Oberflächentemperaturen auftreten.

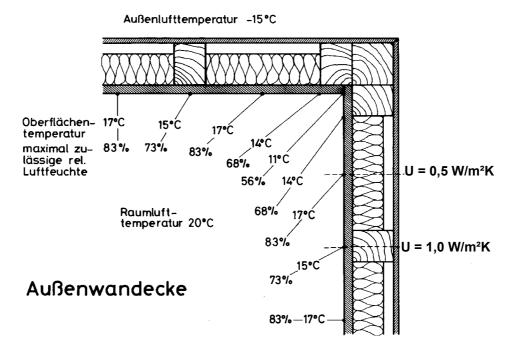


Bild 6.16: Oberflächentemperatur und maximal zulässige relative Luftfeuchte im Bereich einer Außenwandecke.

Kennzeichnung raumseitiger Oberflächentemperaturen

Die raumseitigen Oberflächentemperaturen von Außenbauteilen werden mit Hilfe eines Temperaturfaktors f (bislang Θ) gem. folgender Definition beschrieben:

(Im folgenden werden die **neuen Symbole und Indizes** verwendet)

$$f = \frac{\theta_{si} - \theta_e}{\theta_i - \theta_e}$$

mit

 $\theta_{\rm si}$ raumseitige Oberflächentemperatur in °C

θ_i Raumlufttemperatur in °C

θ_a Außenlufttemperatur in °C

f = 1 entspricht der Raumlufttemperatur und

f = 0 der Außenlufttemperatur

Eine eventuelle Berechnung der raumseitigen Oberflächentemperatur in °C kann gem. folgender Gleichung erfolgen:

$$\theta_{si} = f \cdot (\theta_i - \theta_e) + \theta_e$$

Ein f-Wert von 0,64 entspricht somit bei einer Raumlufttemperatur von 20 °C und einer Außenlufttemperatur von - 10 °C einer Oberflächentemperatur von

$$\theta_{si} = 0.64 \cdot (20 + 10) - 10 = 9.2^{\circ}C$$

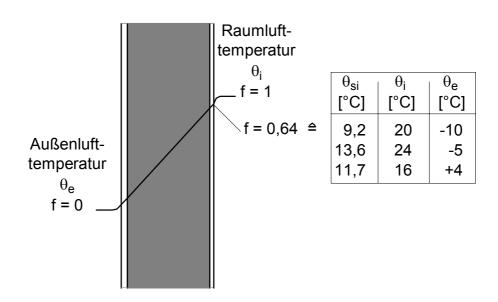


Bild 6.17: Erläuterung der f-Werte.

6.3.3 Bedingung für Tauwasserbildung

Tauwasserbildung auf Bauteiloberflächen kann vermieden werden, wenn folgende Bedingungen eingehalten wird:

$$\phi \le \left(\frac{109.8 + f \cdot \left(\theta_{i} - \theta_{e}\right) + \theta_{e}}{109.8 + \theta_{i}}\right)^{8.02} \cdot 100 \text{ }\%$$

mit

φ relative Feuchte der Raumluft

[%]

f Temperaturdifferenzenverhältnis

[-]

 θ_i Raumlufttemperatur

[°C]

 θ_e Außenlufttemperatur

[°C]

Hinsichtlich der Raumbilanz lautet die Bedingung für Tauwasserfreiheit

$$\frac{n \cdot V_i}{m_i} > \frac{R \cdot T_i}{p_{S,\theta_{si}} - \phi_e \cdot p_{Se}}$$

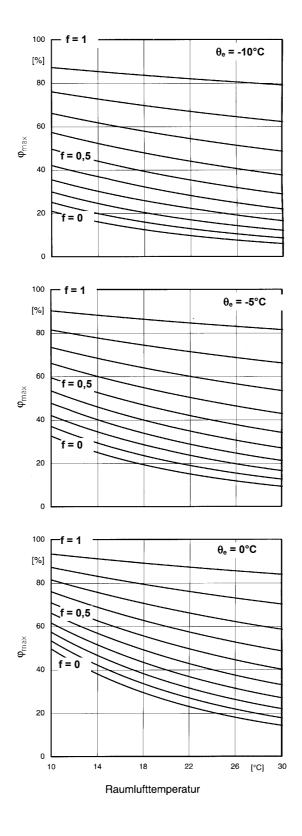


Bild 6.18: Maximal zulässige relative Raumluftfeuchte in Abhängigkeit von der Raumlufttemperatur und den f-Werten zur Vermeidung von Tauwasserbildung.

6.3.4 Bedingung für Schimmelpilzbildung

Schimmelpilzbildung auf Bauteiloberflächen kann vermieden werden, wenn folgende Bedingungen eingehalten wird:

$$\phi \leq 0.8 \cdot \left(\frac{109.8 + f \cdot \left(\theta_i - \theta_e\right) + \theta_e}{109.8 + \theta_i}\right)^{8.02} \cdot 100 \ \%$$

Bei $\theta_{\rm i} =$ 20 °C und $\phi =$ 50% sowie $\theta_{\rm e} =$ -5 °C sollte $f_{\rm min} =$ 0,70 nicht unterschritten werden.

6.3.5 Tauwasser- und Verdunstungs-Massenstromdichte

Tauwasser - Massenstromdichte $\dot{m}_{\scriptscriptstyle T}$

$$\dot{\mathbf{m}}_{\mathsf{T}} = \beta \cdot (\mathbf{p}_{\mathsf{i}} - \mathbf{p}_{\mathsf{S},\theta_{\mathsf{s}\mathsf{i}}})$$

Verdunstungs - Massenstromdichte \dot{m}_{v}

$$\dot{\mathbf{m}}_{V} = \beta \cdot \left(\mathbf{p}_{S,\theta_{si}} - \mathbf{p}_{i} \right)$$

Tabelle 6.4: Wasserdampfübergangskoeffizient β nach Klopfer [Lutz, Jenisch, Klopfer, Freymuth, Krampf: Lehrbuch der Bauphysik. 2. überarbeitete und erweiterte Auflage. Stuttgart: Teubner 1989]

Situation	nähere Bedingung	Wasserdampfübergangs- koeffizient β
		[kg/(m² h Pa)]
freie Strömung in Räumen	$9_0 - 9_L = 5 K$ $10 K$ $15 K$ $20 K$	1,1 · 10 ⁻⁴ 1,2 · 10 ⁻⁴ 1,35 · 10 ⁻⁴ 1,5 · 10 ⁻⁴
im Freien	Windstille Wind 5 m/s Sturm 25 m/s	3,3 · 10 ⁻⁴ 6,3 · 10 ⁻⁴ 25,0 · 10 ⁻⁴

Beispiel

Innenoberfläche
$$\begin{split} \theta_{si} &= 10 \text{ °C} \\ \text{Raum} & \theta_i &= 20 \text{ °C} \quad ; \quad \phi_i = 70 \text{ %} \\ \dot{m}_T &= 1,\! 2 \cdot 10^{-4} \, \frac{kg}{m^2 \, h \, Pa} \cdot \left(2340 \cdot 0,\! 7-1228\right) Pa \\ \dot{m}_T &= 0,\! 0492 \, \frac{kg}{m^2 \, h} = 49,\! 2 \, \frac{g}{m^2 \, h} \end{split}$$

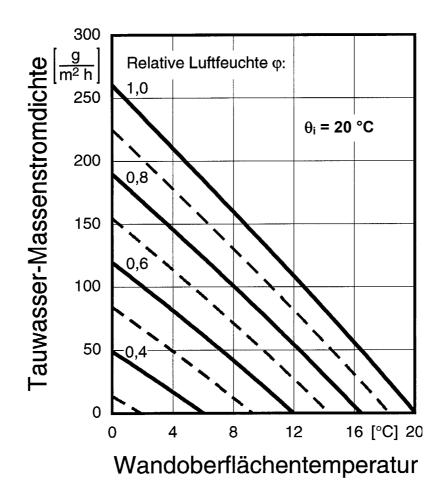


Bild 6.19: Tauwassermassenstromdichte in Abhängigkeit von der Wandoberflächentemperatur (in Anlehnung an Klopfer).

Wasserverdunstung einer im Freien befindlichen, ruhenden Wasseroberfläche

$$\begin{split} \dot{m} &= \left(1,6+1,2\cdot v\right)\cdot 10^{-4}\cdot \left(p_{S,\theta_{Wasser}} - p_{L}\right) \\ mit & v \quad Luftgeschwindigkeit \quad \left\lceil m/s\right\rceil \end{split}$$

7 Feuchteschutztechnische Anforderungen gem. DIN 4108, Teil 3 - Klimabedingter Feuchteschutz

7.1 Tauwasserbildung im Innern von Bauteilen

7.1.1 Anforderungen

Tauwasserbildung im Inneren von Bauteilen, die durch Erhöhung der Stoff-Feuchte von Bau- und Wärmedämmstoffen zu Materialschädigungen oder zu Beeinträchtigungen der Funktionssicherheit führt, ist zu vermeiden. Sie gilt als unschädlich, wenn die wesentlichen Anforderungen, z.B. Wärmeschutz, Standsicherheit, sichergestellt sind. Dies wird in der Regel erreicht, wenn die in a) bis e) aufgeführten Bedingungen erfüllt sind:

- a) Die Baustoffe, die mit dem Tauwasser in Berührung kommen, dürfen nicht geschädigt werden (z.B. durch Korrosion, Pilzbefall).
- b) Das während der Tauperiode im Innern des Bauteils anfallende Wasser muss während der Verdunstungsperiode wieder an die Umgebung abgegeben werden können, d.h. $m_{W,T} \le m_{W,V}$.
- c) Bei Dach- und Wandkonstruktionen darf eine Tauwassermasse von insgesamt 1,0 kg/m² nicht überschritten werden. Dies gilt nicht für die Bedingungen nach d).
- d) Tritt Tauwasser an Berührungsflächen mit einer kapillar nicht wasseraufnahmefähigen Schichten auf, so darf eine Tauwassermasse $m_{W,T}$ von 0,5 kg/m² nicht überschritten werden. Festlegungen für Holzbauteile siehe DIN 68800-2: 1996-05, 6.4.
- e) Bei Holz ist eine Erhöhung des massebezogenen Feuchtegehalts um mehr als 5 %, bei Holzwerkstoffen um mehr als 3 % unzulässig (Holzwolle-Leichtbauplatten nach DIN 1101 und Mehrschicht-Leichtbauplatten nach DIN 1101 sind hiervon ausgenommen).

7.1.2 Klimabedingungen

In nicht klimatisierten Wohn- und Bürogebäuden sowie vergleichbar genutzten Gebäuden können der Berechnung folgende vereinfachte Annahmen zugrunde gelegt werden:

Tauperiode

Außenklima -10°C, 80% relative Luftfeuchte Innenklima +20°C, 50% relative Luftfeuchte

Dauer 1.440 Stunden (= 60 Tage)

Verdunstungsperiode

a) Wandbauteile und Decken unter nicht ausgebauten Dachräumen

Außenklima + 12 °C, 70 % relative Luftfeuchte Innenklima + 12 °C, 70 % relative Luftfeuchte Klima im Tauwasserbereich + 12 °C, 100 % relative Luftfeuchte

Dauer 2.160 Stunden (= 90 Tage)

Außenklima + 12 °C, 70 % relative Luftfeuchte

Temperatur zur Dachoberfläche + 20 °C

Innenklima + 12 °C, 70 % relative Luftfeuchte

Klima im Tauwasserbereich:

- Temperatur entsprechend dem Temperaturgefälle von

außen nach innen

- Relative Luftfeuchte 100 %

Dauer 2.160 Stunden (= 90 Tage)

Vereinfachend dürfen bei diesen Dächern auch die Klimabedingungen für Wandbauteile nach Aufzählung a) zugrunder gelegt werden.

Unter anderen Klimabedingungen, z.B. Schwimmbäder, in klimatisierten bzw. deutlich anders beaufschlagten Räumen oder bei extremem Außenklima sind das tatsächliche Raumklima und das Außenklima am Standort des Gebäudes mit deren zeitlichem Verlauf zu berücksichtigen (siehe hierzu entsprechende Literaturhinweise in der DIN 4108-3).

7.1.3 Wärmeübergangswiderstände

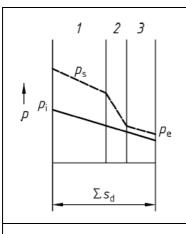
Die Wärmeübergangswiderstände für die Berechnung nach dem Glaser-Verfahren sind nach DIN EN ISO 6946 ermittelt und werden für Bauteile mit ebener Oberfläche wie folgt festgelegt:

Raumseitig mit

- 0,13 m²K/W für Wärmestromrichtungen horizontal, aufwärts sowie für Dachschrägen;
- 0,17 m²K/W für Wärmestromrichtungen abwärts.

Außenseitig mit

- 0,04 m²K/W für alle Wärmestromrichtungen, wenn die Außenoberfläche an Außenluft grenzt (gilt auch für die Außenoberfläche von zweischaligem Mauerwerk mit Luftschicht nach DIN 1053-1);
- 0,08 m²K/W für alle Wärmestromrichtungen, wenn die Außenoberfläche an belüftete Luftschichten grenzt (z.B. hinterlüftete Außenbekleidungen, belüftete Dachräume, belüftete Luftschichten in belüfteten Dächern).


Bei innen liegenden Bauteilen ist zu beiden Seiten mit demselben Wärmeübergangswiderstand zu rechnen.

7.1.4 Stoffkennwerte

Die Bemessungswerte der Wärmeleitfähigkeit und die Richtwerte der Wasserdampf-Diffusionswiderstandszahlen sind DIN V 4108-4 zu entnehmen. Es sind die für die Tauperiode ungünstigeren μ -Werte anzuwenden, welche dann auch für die Verdunstungsperiode beizubehalten sind.

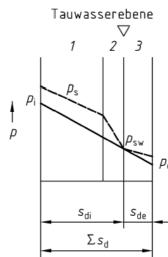

7.1.5 Berechnungsverfahren

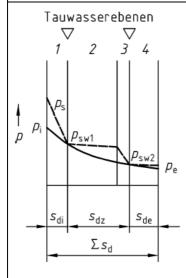
Tabelle 7.1: Schematisierte Diffusionsdiagramme und zugehörige Berechnungsgleichungen für Außenbauteile während der Tauperiode.

Fall a: Wasserdampfdiffusion ohne Tauwasserausfall im Bauteil. Der Wasserdampfteildruck ist an jeder Stelle niedriger als der mögliche Wasserdampfsättigungsdruck.

Keine Berechnung erforderlich!

Fall b: Wasserdampfdiffusion mit Tauwasserausfall in einer Ebene des Bauteils (zwischen den Schichten 2 und 3).

Die Diffusionsstromdichte g_i vom Raum in das Bauteil bis zur Tauwasserebene ist:


$$g_i = \frac{p_i - p_{sw}}{Z_i}$$

Die Diffusionsstromdichte g_{e} von der Tauwasserebene zur Außenoberfläche ist:

$$g_e = \frac{p_{sw} - p_e}{Z_e}$$

Die Tauwassermasse $m_{W,T}$, die während der Tauperiode in der Ebene ausfällt, berechnet sich wie folgt:

$$m_{W,T} = t_T \cdot (g_i - g_e)$$

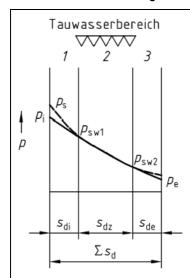
Fall c: Wasserdampfdiffusion mit Tauwasserausfall in zwei Ebenen des Bauteils (zwischen den Schichten 1 und 2 sowie zwischen den Schichten 3 und 4).

Die Diffusionsstromdichte g_i vom Raum in das Bauteil bis zur 1. Tauwasserebene ist:

$$g_i = \frac{p_i - p_{sw1}}{Z_i}$$

Die Diffusionsstromdichte g_z zwischen der 1. und 2. Tauwasserebene ist:

$$g_z = \frac{p_{sw1} - p_{sw2}}{Z_z}$$


Die Diffusionsstromdichte g_{e} von der 2. Tauwasserebene zur Außenoberfläche ist:

$$g_e = \frac{p_{sw2} - p_e}{Z_e}$$

Die Tauwassermassen m_{WT,1} und m_{WT,2}, die während der Tauperiode in den Ebenen 1 und 2 ausfallen, berechnen sich wie folgt:

$$m_{WT,1} = t_t \cdot \left(g_i - g_z\right) \quad m_{WT,2} = t_T \cdot \left(g_z - g_e\right)$$

Tabelle 7.1: Fortsetzung

Fall d: Wasserdampfdiffusion mit Tauwasserausfall in einem Bereich im Innern des Bauteils.

Die Diffusionsstromdichte g_i der Innenoberfläche in das Bauteil bis zum Anfang des Tauwasserbereichs ist:

$$g_i = \frac{p_i - p_{sw1}}{Z_i}$$

Die Diffusionsstromdichte g_e vom Ende des Tauwasserbereichs zur Außenoberfläche ist:

$$g_e = \frac{p_{sw2} - p_e}{Z_e}$$

Die Tauwassermasse $m_{W,T}$, die während der Tauperiode im Bereich ausfällt, berechnet sich wie folgt:

$$m_{W,T} = t_T \cdot (g_i - g_e)$$

Im Regelfall werden bei nicht klimatisierten Räumen die vereinfachten Randbedingungen nach DIN 4108 Teil 3 der Berechnung zugrunde gelegt.

In den Gleichungen bedeuten:

g_i [kg/m² h)] Diffusionsstromdichte von der Innenoberfläche bis Tauwasserebene bzw. Tauwasserebene bzw

g_e [kg/m² h)] Diffusionsstromdichte von Tauwasserebene bzw. Tauwasserbereich zur Außenoberfläche

g_z [kg/m² h)] Diffusionsstromdichte zwischen zwei Tauwasserebenen

 $\begin{array}{ll} p_i & [Pa] & Wasserdampfteildruck im Raum \\ p_e & [Pa] & Wasserdampfteildruck im Freien \\ p_{sw} & [Pa] & Wasserdampfsättigungsdruck \\ \end{array}$

bei Fall b: in der Tauwasserebene

bei Fall c: in der 1. und 2. Tauwasserebene (p_{sw1}, p_{sw2})

bei Fall d: am Anfang und Ende des Tauwasserbereichs (p_{sw1}, p_{sw2})

Z [m² h Pa/kg] Wasserdampf-Diffusionsdurchlasswiderstand der Baustoffschichten

bei Fall b: zwischen der raumseitigen Bauteiloberfläche und der Tauwasserebene (Z_i)

zwischen der Tauwasserebene und der außenseitigen Bauteiloberfläche (Z_e)

bei Fall c: zwischen der raumseitigen Bauteiloberfläche und der 1. Tauwasserebene (Z_i)

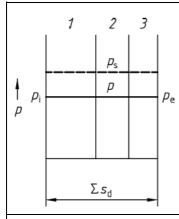
zwischen der 1. und der 2. Tauwasserebene (Zz)

zwischen der 2. Tauwasserebene und der außenseitigen Bauteiloberfläche (Z_e)

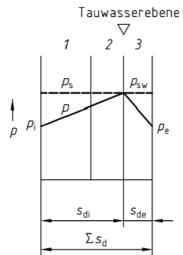
bei Fall d: zwischen der raumseitigen Bauteiloberfläche und dem Anfang des Tauwasserbe-

reichs (Z_i)

zwischen dem Ende des Tauwasserbereichs und der außenseitigen Bauteiloberflä-


che (Z_e)

 t_T [h] Dauer der Tauperiode


m_{W,T} [kg/m²] die Tauwassermasse m_{W,T}, die während der Tauperiode in der Ebene oder im Be-

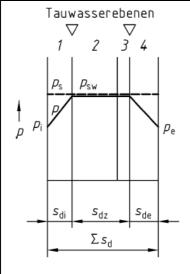
reich ausfällt

Tabelle 7.2: Schematisierte Diffusionsdiagramme und zugehörige Berechnungsgleichungen für Außenbauteile während der Verdunstungsperiode am Beispiel von Außenwänden mit den vereinfachten Randbedingungen nach DIN 4108, Teil 3.

Fall a: Während der Tauperiode hat kein Tauwasserausfall stattgefunden (an keiner Stelle p = p_s). Eine Untersuchung der Verdunstung erübrigt sich.

Fall b: Wasserdampfdiffusion während der Verdunstung nach Tauwasserausfall in einer Ebene des Bauteils. Die Verdunstung erfolgt aus der Ebene des Tauwasserausfalls.

Die Diffusionsstromdichte g_i von der Tauwasserebene zur Innenoberfläche ist:


$$g_i = \frac{p_{sw} - p_i}{Z_i}$$

Die Diffusionsstromdichte g_{e} von der Tauwasserebene zur Außenoberfläche ist:

$$g_e = \frac{p_{sw} - p_e}{Z_e}$$

Die verdunstende Wassermasse $m_{W,V}$, die während der Verdunstungsperiode aus dem Bauteil abgeführt werden kann, berechnet sich wie folgt:

$$m_{W,V} = t_V \cdot \! \left(g_i + g_e \right)$$

Fall c: Wasserdampfdiffusion während der Verdunstung nach Tauwasserausfall in zwei Ebenen des Bauteils.

Zwischen beiden Tauwasserebenen wird zu Beginn der Verdunstungsperiode der Wasserdampfsättigungsdruck entsprechend den zugrunde gelegten Temperaturbedingungen für die Verdunstungsperiode angenommen. Die Verdunstung erfolgt zunächst von beiden Tauwasserebenen zur jeweils näher liegenden Oberfläche. Diffusionsströme zwischen beiden Tauwasserebenen treten dabei entweder wegen isothermer Bedingungen nicht auf oder werden im Fall eines Temperaturgefälles und erneuter Tauwasserbildung während der Verdunstungsperiode nicht berücksichtigt. Ist die Tauwassermasse in einer Ebene vor Ende der Verdunstungsperiode abgeführt, so erfolgt für die restliche Zeit eine Verdunstung aus der anderen Ebene zu beiden Oberflächen hin.

Die Diffusionsstromdichte g_i von der 1. Tauwasserebene zur Innenoberfläche ist:

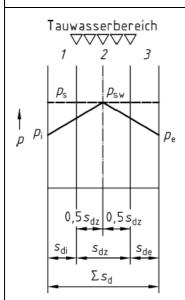
$$g_i = \frac{p_{sw} - p_i}{Z_i}$$

Die Diffusionsstromdichte g_{e} von der 2. Tauwasserebene zur Außenoberfläche ist:

Tabelle 7.2: Fortsetzung.

$$g_e = \frac{p_{sw} - p_e}{Z_e}$$

Ist zu einem Zeitpunkt $t_{V1} < t_V$ bzw. $t_{V2} < t_V$ die Tauwassermasse in der ersten bzw. zweiten Tauwasserebene verdunstet, so ergibt sich die flächenbezogene Verdunstungsmasse $m_{W,V}$, die während der Verdunstungsperiode t_V insgesamt aus dem Bauteil abgeführt werden kann folgendermaßen:


$$t_{V1} = \frac{m_{W,T1}}{g_i} \qquad t_{V2} = \frac{m_{W,T2}}{g_e}$$

Für $t_{V1} < t_{V2}$ ist die folgende Gleichung zu verwenden:

$$m_{W,V} = t_{V1} \cdot \left(g_i + g_e\right) + \left(t_V - t_{V1}\right) \cdot \left(\frac{p_{sw} - p_i}{Z_i + Z_z} + g_e\right)$$

Für $t_{V1} > t_{V2}$ ist die folgende Gleichung zu verwenden:

$$m_{W,V} = t_{V2} \cdot \left(g_i + g_e\right) + (t_V - t_{V2}) \cdot \left(g_i + \frac{p_{sw} - p_e}{Z_e + Z_z}\right)$$

Fall d: Wasserdampfdiffusion während der Verdunstung nach Tauwasserausfall in einem Bereich im Innern des Bautoile

Die insgesamt in dem Bereich ausgefallene Tauwassermasse wird im Diffusionsdiagramm für die Verdunstung der Mitte des Bereiches zugeordnet. Die Verdunstung erfolgt damit aus der Mitte des Tauwasserbereiches.

Die Diffusionsstromdichte g_i von der Mitte des Tauwasserbereichs zum Raum ist:

$$g_i = \frac{p_{sw} - p_i}{Z_i + 0.5 \cdot Z_z}$$

Die Diffusionsstromdichte $g_{\rm e}$ von der Mitte des Tauwasserbereichs zum Freien ist:

$$g_e = \frac{p_{sw} - p_e}{0.5 \cdot Z_z + Z_e}$$

Die flächenbezogene Verdunstungsmasse $m_{W,V}$, die während der Verdunstungsperiode aus dem Bauteil abgeführt werden kann, berechnet sich wie folgt:

$$m_{W,V} = t_V \cdot (g_i + g_e)$$

Die in Tabelle 7.2 dargestellten Fälle a bis d entsprechen den Fällen a bis d in Tabelle 7.1.

Im Regelfall werden bei nicht klimatisierten Räumen die vereinfachten Randbedingungen nach DIN 4108 Teil 3 der Berechnung zugrunde gelegt.

Die Bedeutung der in den Gleichungen verwendeten Größen ist in Tabelle 7.1 angegeben.

Zusätzlich bedeutet:

t_V [h] Dauer der Verdunstungsperiode

 $m_{W,V}$ [kg/m²] die verdunstende Wassermasse $m_{W,V}$, die während der Verdunstungsperiode aus dem Bauteil abgeführt werden kann.

7.1.6 Bauteile, für die kein rechnerischer Nachweis erforderlich ist

Da sich viele Dach- bzw. Außenwandkonstruktionen seit Jahren bewährt haben, ist für diese Konstruktionen keine Diffusionsberechnung erforderlich. U.a. gehören dazu:

<u>Außenwände</u>

Ein- und zweischaliges Mauerwerk nach DIN 1053-1 (auch mit Kerndämmung), Wände aus Normalbeton nach DIN EN 206-1 bzw. DIN 1045-2, Wände aus gefügedichtem Leichtbeton nach DIN 4219-1 und DIN 4219-2, Wände aus haufwerksporigem Leichtbeton nach DIN 4232, jeweils mit Innenputz und folgenden Außenschichten.

- Putz nach DIN 18550-1 oder Verblendmauerwerk nach DIN 1053-1;
- angemörtelte oder angemauerte Bekleidungen nach DIN 18515-1 und DIN 18151-2, bei einem Fugenanteil von mindestens 5 %;
- hinterlüftete Außenwandbekleidungen nach DIN 18516-1 mit und ohne Wärmedämmung;
- Außendämmungen nach DIN 1102 oder nach DIN 18550-3 oder durch ein zugelassenes Wärmedämmverbundsystem.

Wände mit Innendämmung, in den unter a) und b) genannten Konstruktionsvarianten:

- a) Wände wie im vorhergehenden Absatz beschrieben aber mit Innendämmung mit einem Wärmedurchlasswiderstand der Wärmedämmschicht $R \le 1,0$ m²K/W sowie einem Wert der wasserdampfdiffusionsäquivalenten Luftschichtdicke der Wärmedämmschicht mit Innenputz bzw. Innenbekleidung $s_{d,i} \ge 0,5$ m.
- b) Wände aus Mauerwerk nach DIN 1053-1 und Wände aus Normalbeton nach DIN EN 206-1 bzw. DIN 1045-2, jeweils mit den im ersten Absatz genannten Außenschichten (ohne Außendämmung), mit Innendämmung aus verputzten bzw. bekleideten Holzwolle-Leichtbauplatten nach DIN 1101 mit einem Wärmedurchlasswiderstand der Innendämmung $R \le 0.5 \text{ m}^2\text{K/W}$.

Wände in Holzbauart nach DIN 68800-2:1996-05, 8.2 mit vorgehängten Außenwandbekleidungen, zugelassenen Wärmedämmverbundsystemen oder Mauerwerk-Vorsatzschalen, jeweils mit raumseitiger diffusionshemmender Schicht s_{d,i} ≥ 2 m.

Holzfachwerkwände mit Luftdichtheitsschicht, in den unter a) bis c) genannten Konstruktionsvarianten:

- a) mit wärmedämmender Ausfachung (Sichtfachwerk);
- b) mit Innendämmung (über Fachwerk und Gefach) mit einem Wärmedurchlasswiderstand der Wärmedämmschicht $R \le 1,0$ m²K/W und einer wasserdampfdiffusionsäquivalenten Luftschichtdicke (gegebenenfalls einschließlich Luftdichtheitsschicht) mit Innenputz und Innenbekleidung 1,0 m $\le s_{d,i} \le 2$ m;
- c) mit Innendämmung (über Fachwerk und Gefach) aus Holwolleleichtbauplatten nach DIN 1101;
- d) mit Außendämmung (über Fachwerk und Gefach) als Wärmedämmverbundsystem oder Wärmedämmputz, wobei die wasserdampfdiffusionsäquivalente Luftschichtdicke der genannten äußeren Konstruktionsschicht $s_{d,e} \le 2$ m ist oder mit hinterlüfteter Außenwandbekleidung.

Kellerwände aus einschaligem Mauerwerk nach DIN 1053-1 oder Beton nach DIN EN 206-1 mit außen liegender Wärmedämmung (Perimeterdämmung) – siehe auch DIN 4108-2.

Dächer – Allgemeines

Folgende Dachkonstruktionen werden grundsätzlich unterschieden:

- nicht belüftete Dächer: Bei nichtbelüfteten Dächern ist direkt über der Wärmedämmung keine belüftete Luftschicht angeordnet. Zu nicht belüfteten Dächern gehören auch solche, die außenseitig im weiteren Dachaufbau angeordnete Luftschichten oder Lüftungsebenen haben.
- belüftete Dächer: Bei belüfteten Dächern ist direkt über der Wärmedämmung eine belüftete Luftschicht angeordnet.

Bezüglich Deckungen bzw. Abdichtungen gelten folgende Kennzeichnungen:

a) Dachdeckungen

Dachdeckungen müssen regensicher sein. Kennzeichnend für Dachdeckungen sind die sich überlappenden Deckwerkstoffe, z.B. Dachziegel, Dachsteine, Schiefer, Metallbleche.

Es werden unterschieden:

- belüftete Dachdeckungen: Dachdeckungen auf linienförmiger Unterlage, z.B.
 Lattung und Konterlattung.
- nicht belüftete Dachdeckungen: Dachdeckungen auf flächiger Unterlage, z.B.
 Schalung.

Regensicherheit wird im Normalfall erreicht, wenn die Regeldachneigungen und Werkstoffüberdeckungen eingehalten werden. Bei Dächern mit Wärmedämmung zwischen, unter und/oder über den Sparren müssen in der Regel zusätzliche Regensichernde Maßnahmen, z.B. Unterdächer, Unterdeckungen, Unterspannungen, geplant und ausgeführt werden.

b) Dachabdichtungen:

Dachabdichtungen müssen wasserdicht sein. Kennzeichnend für Dachabdichtungen sind die wasserdicht verbundenen Dachabdichtungswerkstoffe, z.B. Bitumenbahnen, Kunststoffbahnen, Elastomerbahnen, Flüssigdachabdichtungen. Dachabdichtungen müssen bis zur Oberkante der An- und Abschlüsse wasserdicht sein. Dies erfordert auch wasserdichte Anschlüsse an Dachdurchdringungen sowie die Einhaltung bestimmter Anschlusshöhen (siehe DIN 18531).

Nicht belüftete Dächer:

Der Wärmedurchlasswiderstand der Bauteilschichten unterhalb einer raumseitigen diffusionshemmenden Schicht darf bei Dächern ohne rechnerischen Nachweis höchstens 20 % des Gesamtwärmedurchlasswiderstandes betragen (bei Dächern mit nebeneinanderliegenden Bereichen unterschiedlichen Wärmedurchlasswiderstandes ist der Gefachbereich zugrunde zu legen).

Folgende nicht belüftete Dächer bedürfen keines rechnerischen Nachweises:

- a) Nicht belüftete Dächer mit Dachdeckungen
 - nicht belüftete Dächer mit belüfteter Dachdeckung oder mit zusätzlich belüfteter Luftschicht unter nicht belüfteter Dachdeckung und einer Wärmedämmung

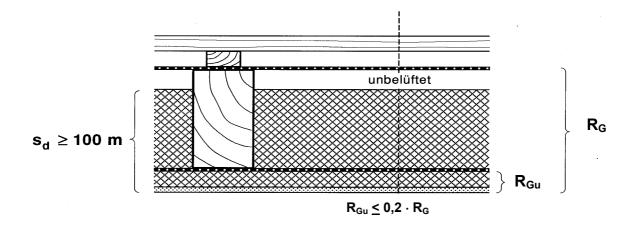
zwischen, unter und/oder über den Sparren und zusätzlicher regensichernder Schicht bei einer Zuordnung der Werte der wasserdampfdiffusionsäquivalenten Luftschichtdicken nach Tabelle 7.3;

Tabelle 7.3: Zuordnung für Werte der wasserdampfdiffusionsäquivalenten Luftschichtdicke der außenund raumseitig zur Wärmedämmschicht liegenden Schichten (DIN 4108-2, Tabelle 1)

Wasserdampfdiffusions	äquivalente Luftschichtdicke
	S _d
	m
außen s _{d,e}	innen s _{d,i}
≤ 0,1	≥ 1,0
≤ 0,3 ^c	≥ 2,0
> 0,3	$s_{d,i} \ge 6 s_{d,e}$

^a s_{d,e} ist die Summe der Werte der wasserdampfdiffusionsäquivalenten Luftschichtdicken aller Schichten, die sich oberhalb der Wärmedämmschicht befinden bis zur ersten belüfteten Luftschicht.

- nicht belüftete Dächer mit nicht belüfteter Dachdeckung und einer raumseitigen diffusionshemmenden Schicht mit einer wasserdampfdiffusionsäquivalenten Luftschichtdicke s_{d,i} ≥ 100 m unterhalb der Wärmedämmschicht.


ANMERKUNG: Bei nicht belüfteten Dächer mit belüfteter oder nicht belüfteter Dachdeckung und äußeren diffusionshemmenden Schichten mit $s_{d,e} \ge 2$ m kann erhöhte Bauchfeuchte oder später z.B. durch Undichtheiten eingedrungenen Feuchte nur schlecht oder gar nicht austrocknen.

b) Nicht belüftete Dächer mit Dachabdichtung

- nicht belüftete Dächer mit Dachabdichtung und einer diffusionshemmenden Schicht mit s_{d,i} ≥ 100 m unterhalb der Wärmedämmschicht, wobei der Wärmedurchlasswiderstand der Bauteilschichten unterhalb der diffusionshemmenden Schicht höchstens 20 % des Gesamtwärmedurchlasswiderstandes betragen darf. Bei diffusionsdichten Dämmstoffen (z.B. Schaumglas) auf starren Unterlagen kann auf eine zusätzliche diffusionshemmende Schicht verzichtet werden.

^b s_{d,i} ist die Summe der Werte der wasserdampfdiffusionsäquivalenten Luftschichtdicken aller Schichten, die sich unterhalb der Wärmedämmschicht bzw. unterhalb gegebenenfalls vorhandener Untersparrendämmungen befinden bis zur ersten belüfteten Luftschicht.

^c Bei nicht belüfteten Dächern mit s_{d,e} ≤ 0,2 m kann auf chemischen Holzschutz verzichtet werden, wenn die Bedingungen nach DIN 68800-2 eingehalten sind.

z.B. 0,1 mm Polyethylen-Folie 0,05 mm Aluminium-Folie

Bild 7.1: DIN 4108, Teil 3 - Nichtbelüftete Dächer, für die kein Nachweis erforderlich ist (Beispiel für Fall b)).

- nicht belüftete Dächer aus Porenbeton nach DIN 4223 mit Dachabdichtung und ohne diffusionshemmende Schicht an der Unterseite und ohne zusätzliche Wärmedämmung;
- nicht belüftete Dächer mit Dachabdichtung und Wärmedämmung oberhalb der Dachabdichtung (so genannte "Umkehrdächer") und dampfdurchlässiger Auflast auf der Wärmedämmschicht (z.B. Grobkies).

Belüftete Dächer:

Folgende belüftete Dächer bedürfen keines rechnerischen Nachweises:

- a) Belüftete Dächer mit einer Dachneigung < 5° und einer diffusionshemmenden Schicht mit $s_{d,i} \ge 100$ m unterhalb der Wärmedämmschicht, wobei der Wärmedurchlasswiderstand der Bauteilschichten unterhalb der diffusionshemmenden Schicht höchstens 20 % des Gesamtwärmedurchlasswiderstandes betragen darf.
- b) Belüftete Dächer mit einer Dachneigung > 5° unter folgenden Bedingungen:
 - Die Höhe des freien Lüftungsquerschnittes innerhalb des Dachbereiches über der Wärmedämmschicht muss mindestens 2 cm betragen.
 - Der freie Lüftungsquerschnitt an den Traufen bzw. an Traufe und Pultdachabschluss muss mindestens 2 ⁰/₀₀ der zugehörigen geneigten Dachfläche betragen, mindestens jedoch 200 cm²/m.
 - Bei Satteldächern sind an First und Grat Mindestlüftungsquerschnitte von 0,5 $^{0}/_{00}$ der zugehörigen geneigten Dachfläche erforderlich, mindestens jedoch 50 cm²/m.

ANMERKUNG 1: Bei klimatisch unterschiedlich beanspruchten Flächen eines Daches (z.B. Nord/Süd- Dachflächen) ist eine Abschottung der Belüftungsschicht im Firstbereich zweckmäßig.

ANMERKUNG 2: Bei Kehlen sind Lüftungsöffnungen im Allgemeinen nicht möglich. Solche Dachkonstruktionen – auch solche mit Dachgauben – sind daher zweckmäßiger ohne Belüftung auszuführen. - Der s_d-Wert der unterhalb der

Belüftungsschicht angeordneten Bauteilschichten muss insgesamt mindestens 2 m betragen.

Fenster, Außentüren und Vorhangfassaden:

Werden Fenster, Außentüren und Vorhangfassaden ausschließlich aus wasserdampfdiffusionsdichten Elementen gefertigt, ist kein Tauwassernachweis erforderlich.

7.2 Gegenüberstellung belüfteter und nicht belüfteter geneigter Dächer

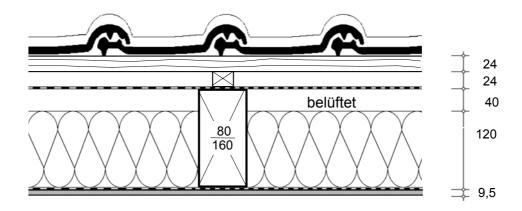


Bild 7.2: Sparrendach belüftet.

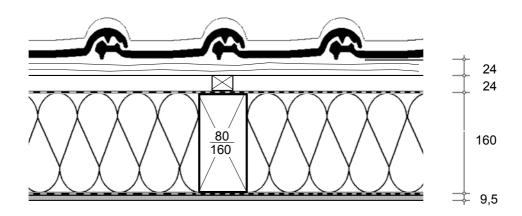


Bild 7.3: Sparrendach nicht belüftet.

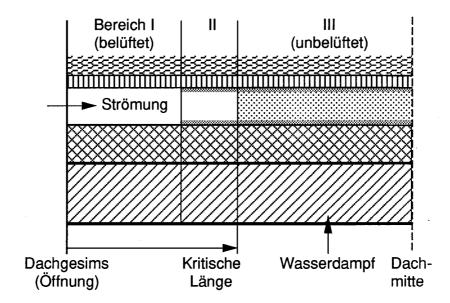


Bild 7.4: Feuchtetransportvorgänge in einem belüfteten Flachdach im Winter.

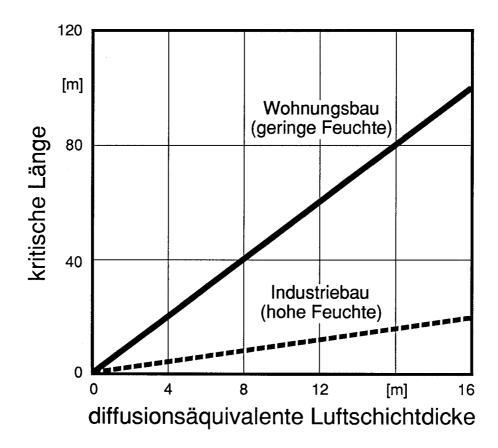


Bild 7.5: "Kritische Länge" in Abhängigkeit vom Dampfsperrwert der Flachdachunterkonstruktion.

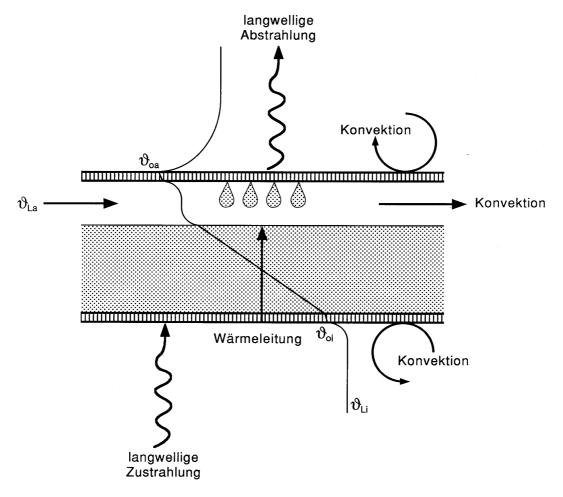


Bild 7.6: Tauwasserbildung infolge Belüftung.

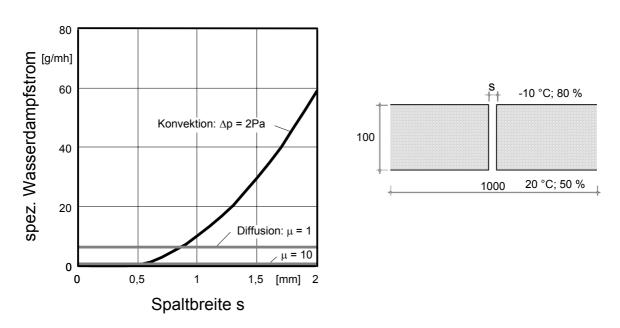
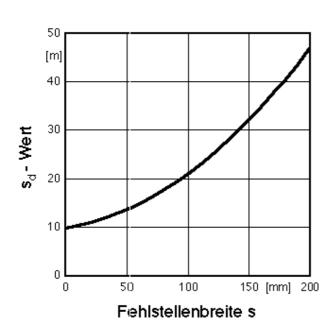



Bild 7.7: Vergleich der Transportmechanismen Diffusion und Konvektion.

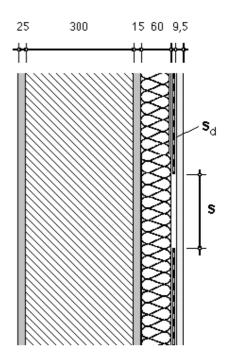


Bild 7.8: Erforderlicher s_d-Wert für "Tauwasserfreiheit" in Abhängigkeit von der Spaltbreite.

Zugrunde gelegte Wärmeleitfähigkeiten:

Außenputz:0,87 W/(mK)Mauerwerk:0,70 W/(mK)Innenputz:0,35 W/(mK)Dämmstoff:0,04 W/(mK)Gipskartonplatte:0,21 W/(mK)

8 Regenschutz

Bei Dächern oder bei Fundamenten und Gründungen, die mit Wasser in Berührung kommen, darf grundsätzlich kein Wasser eindringen. Derartige Bauteile müssen somit gegenüber flüssigem Wasser "wasserdicht" sein. In andere Bauteile darf Wasser bei Beregnung z.T. eindringen. Außerdem kann infolge Wassermitführung mit Luftströmungen, die unter dem Einfluss des Staudruckes bei Windanströmung durch Spalten, Risse und fehlerhafte Stellen im Bereich der gesamten Fassade auftreten, Wasser in oder durch die Konstruktion geleitet werden.

Maßnahmen zur Begrenzung der kapillaren Wasseraufnahme von Außenbauteilen können darin bestehen, dass der Regen an der Außenoberfläche des wärmegedämmten Bauteils durch eine wasserdichte oder mit Luftabstand vorgesetzte Schicht abgehalten wird oder dass die Wasseraufnahme durch wasserhemmende Schichten an der Außenoberfläche oder in Innern der Konstruktion reduziert wird bzw. auf einen bestimmten Bereich (z.B. Vormauerschicht) beschränkt wird. Anderseits darf die Wasserabgabe (Verdunstung) nicht nachteilig beeinträchtigt werden.

Die Saugfähigkeit der Baustoffe und der Oberflächenschichten (z.B. Außenputz, Beschichtungen) wird in diesem Zusammenhang durch den Wasseraufnahmekoeffizienten w beurteilt. Für die Beurteilung der Wasserabgabe in Verdunstungsperioden ist bei wasserhemmenden und wasserabweisenden Oberflächenschichten der diffusionsäquivalente Luftschichtdicke s_d maßgebend.

8.1 Beanspruchungsgruppen

Die Beanspruchung von Gebäuden oder von einzelnen Gebäudeteilen durch Schlagregen wird durch die Beanspruchungsgruppe I, II oder III definiert. Bei der Wahl der Beanspruchungsgruppe sind die regionalen klimatischen Bedingungen (Regen, Wind), die örtliche Lage und die Gebäudeart (z.B. Höhe, Dachausbildung) zu berücksichtigen. Die Beanspruchungsgruppe ist daher im Einzelfall festzulegen. Hierzu dienen folgende Hinweise:

<u>Beanspruchungsgruppe I:</u> Geringe Schlagregenbeanspruchung. Windarme Gebiete mit Jahresniederschlag unter 600 mm sowie besonders geschützte Lagen auch bei größeren Niederschlagsmengen.

Beanspruchungsgruppe II: Mittlere Schlagregenbeanspruchung. Im allgemeinen Gebiete mit Jahresniederschlagsmengen von 600 mm bis 800 mm sowie geschützte Lagen in Gebieten mit größeren Niederschlagsmengen. Hochhäuser und Häuser in exponierter Lage in Gebieten, die aufgrund der regionalen Regen- und Windverhältnisse einer geringen Schlagregenbeanspruchung zuzuordnen wären.

Beanspruchungsgruppe III: Starke Schlagregenbeanspruchung. Windreiche Gebiete mit Jahresniederschlagsmengen über 800 mm sowie windreiche Gebiete auch mit geringeren Niederschlagsmengen (z.B. Küstengebiete, Mittel- und Hochgebirgslagen, Alpenvorland), Hochhäuser und Häuser in exponierter Lage in Gebieten, die aufgrund der regionalen Regen- und Windverhältnisse einer mittleren Schlagregenbeanspruchung zuzuordnen wären.

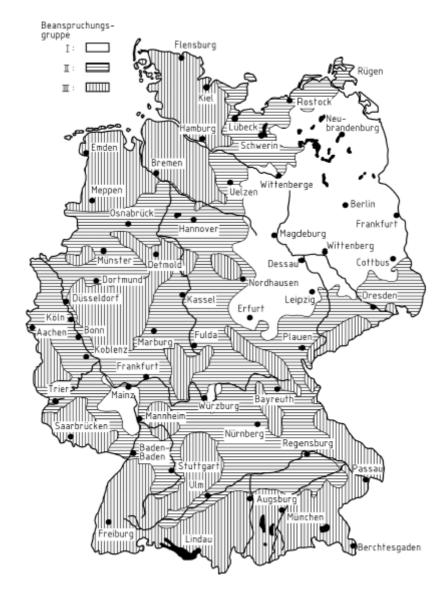


Bild 8.1: Einteilung des Bundesgebiets in Schlagregen-Beanspruchungsgruppen (DIN 4108-3, Anhang C).

8.2 Hinweise zur Erfüllung des Regenschutzes

8.2.1 Außenwände

Bei Außenwänden braucht nicht in jedem Fall - wie bei Dächern - jegliche Feuchteaufnahme unterbunden zu werden. Eine gewisse Wasseraufnahme kann während der Beregnung nämlich dann zugelassen werden, wenn das Wasser in der darauffolgenden Trockenperiode wieder abgegeben wird und zwischenzeitlich keine nachteiligen Auswirkungen zeitigt.

Schlagregenbeanspruchungen von Wänden entstehen bei Regen und gleichzeitiger Windanströmung auf die Fassade. Das auftreffende Regenwasser kann durch kapillare Saugwirkung der Oberfläche in die Wand aufgenommen werden oder infolge des Staudrucks z.B. über Risse, Spalten oder fehlerhafte Abdichtungen in die Konstruktion eindringen. Die erforderliche Abgabe des aufgenommenen Wassers durch Ver-

dunstung, z.B. über die Außenoberfläche, darf nicht unzulässig beeinträchtigt werden.

Der Schlagregenschutz einer Wand zur Begrenzung der kapillaren Wasseraufnahme und zur Sicherstellung der Verdunstungsmöglichkeiten kann durch konstruktive Maßnahmen (z.B. Außenwandbekleidung, Verblendmauerwerk, Schutzschichten im Inneren der Konstruktion) oder durch Putze bzw. Beschichtungen erzielt werden. Die zu treffenden Maßnahmen richten sich nach der Intensität der Schlagregenbeanspruchung, die durch Wind durch Wind und Niederschlag sowie durch die örtliche Lage und die Gebäudeart bestimmt sind (siehe Beanspruchungsgruppen).

Tabelle 8.1: Beispiele für die Anwendung üblicher Wandbauarten in Abhängigkeit von der Schlagregenbeanspruchung.

Spalte	1	2	3				
Zeile	Beanspruchungsgruppe I geringe Schlagregenbeanspruchung	Beanspruchungsgruppe II mittlere Schlagregenbeanspruchung	Beanspruchungsgruppe III starke Schlagregenbeanspruchung				
1	Außenputz ohne besondere Anforderung an den Schlagregenschutz nach DIN 18 550-1 auf		Wasserabweisender Außenputz nach DIN 18 550-1 bis DIN 18550-4 oder Kunstharzputz nach DIN 18558 auf				
	- Außenwänden aus Mauerwerk, Wand	lbauplatten, Beton o. ä.					
	- Holzwolle-Leichtbauplatten und Mehr	schicht-Leichtbauplatten nach DIN 1101	ausgeführt nach DIN				
2	Einschaliges Sichtmauerwerk nach DIN 1053-1 mit einer Dicke von 31 cm (mit Innenputz)	Zweischaliges Verblendmauerwerk nach DIN 1053-1 mit Luftschicht und Wärmedämmung oder mit Kerndäm- mung (mit Innenputz)					
3	Außenwände mit im Dickbett oder Dünnbett angemörtelten Fliesen oder Platen nach DIN 18515-1 Außenwände mit im Dickbett oder Dünnbett angemörtelten Fliesen oder Platen nach DIN 18515-1 mit wasser abweisendem Ansetzmörtel.						
4	4 Außenwände mit gefügedichter Betonaußenschicht nach DIN EN 206-1 bzw. DIN 1045-2 sowie DIN 4219-1 und DIN 4219-2						
5	Wände mit hinterlüfteten Außenwandbekleidungen nach DIN 18 516-1, DIN 18 516-3 und DIN 18 516-4 ^a						
6	Wände mit Außendämmung durch ein Wärmedämmputzsystem nach DIN 18550-3 oder durch ein zugelassenes Wärmedämmverbundsystem						
6	Außenwände in Holzbauart mit Wetterschutz nach DIN 68800-2:1996-05, 8.2						
^a Offen	Offene Fugen zwischen den Bekleidungsplatten beeinträchtigen den Regenschutz nicht.						

Bei Außenputzen, Beschichtungen und Anstrichen wird der Regenschutz aufgrund des Wasseraufnahmekoeffizienten w und der diffusionsäquivalenten Luftschichtdicke s_d der Schicht bewertet.

Man unterscheidet:

wassersaugende Schicht

Oberflächenschicht mit $w \ge 2 kg/(m^2 \cdot h^{0,5})$

wasserhemmende Schicht

Oberflächenschicht mit 0,5 kg/($m^2 \cdot h^{0,5}$) < w < 2 kg/($m^2 \cdot h^{0,5}$)

wasserabweisende Schicht

Oberflächenschicht mit $w \leq 0.5 \text{ kg/(m}^2 \cdot h^{0.5})$

Tabelle 8.2: Kriterien für den Regenschutz von Putzen und Beschichtungen (DIN 4108-3, Tabelle 2).

Kriterien für den Re- genschutz	Wasseraufnahme- koeffizient w kg/(m² h ^{0,5})	Wasserdampf- diffusionsäquivalente Luftschichtdicke sd m	Produkt w · s _d kg/(m h ^{0,5})	
wasserhemmend	0,5 < w < 2,0	а	а	
wasserabweisend	w ≤ 0,5	≤ 2,0	≤ 0,2	

^a Keine Festlegung bei wasserhemmenden Putzen bzw. Beschichtungen; siehe hierzu auch Dln18550-1 sowie den Hinweis auf die Sicherstellung von Verdunstungsmöglichkeiten in 5.1



Bild 8.2: Anforderungen an wasserabweisende Außenputze nach DIN 18 550. Putze gelten als wasserabweisend, wenn die Koordinaten w und s_d innerhalb des schraffierten Bereichs liegen.

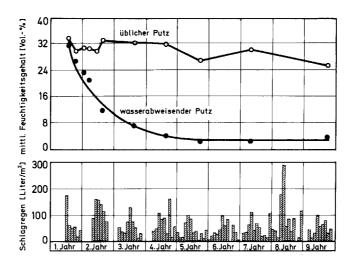


Bild 8.3: Mittlerer Feuchtegehalt einer nach Westen orientierten Porenbetonwand mit wasserabweisendem Putz bzw. üblichem Putz im Verlauf von 9 Jahren mit Angabe der Schlagregenbeanspruchung. Untersuchungen an einem beheizten Versuchsgebäude in der Freilandversuchsstelle Holzkirchen.

8.2.2 **Fugen**

Der Schlagregenschutz eines Gebäudes muss auch im Bereich der Fugen und Anschlüsse sichergestellt sein. Zur Erfüllung dieser Anforderungen können die Fugen und Anschlüsse entweder durch Fugendichtstoffe oder durch konstruktive Maßnahmen gegen Schlagregen abgedichtet werden. Beispiele für die Anwendung von Fugenabdichtungen sind in Abhängigkeit von der Schlagregenbeanspruchung in der folgenden Tabelle angegeben.

Tabelle 8.3: Beispiele für die Zuordnung von Fugenabdichtungsarten und Beanspruchungsgruppen.

Spalte	1	2	3					
Zeile	Fugenart	Beanspruchungsgruppe I geringe Schlagregenbean- spruchung	ringe Schlagregenbean- mittlere Schlagregenbean-					
1	Vertikalfugen	Konstruktive Fugenausbildun	Konstruktive Fugenausbildung ^a					
2	vertikallugeri	Fugen nach DIN 18 540 Teil	Fugen nach DIN 18 540 Teil 1 ^a					
3	Horizontalfugen	Offene, schwellenförmige Fugen, Schwellhöhe h ≥ Fugen, Schwellhöhe h ≥ Fugen, Schwellhöhe h ≥ 100 mm (siehe Bild 8.4)						
4	•	Fugen nach DIN 18 540 Teil 1 mit zusätzlichen konstruktiven Maßnahmen, z.B. mit Schwellhöhe h $\geq 50~\text{mm}$						

Fugen nach DIN 18 540 dürfen nicht bei Bauten im Bergsenkungsgebiet verwendet werden. Bei Setzungsfugen ist die Verwendung nur dann zulässig, wenn die Verformungen bei der Bemessung der Fugenmaße berücksichtigt werden.

Die Möglichkeit der Wartung von Fugen, einschließlich der Fugen von Anschlüssen, ist vorzusehen.

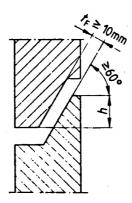


Bild 8.4: Schematische Darstellung offener schwellenförmiger Fugen (mit h = Schwellhöhe).

Nomenklatur Skript Feuchtelehre

Im Zuge der Einführung europäischer Normen haben sich viele Bezeichnungen geändert (und ändern sich weiterhin ständig). Im praktischen Gebrauch tauchen jedoch die alten Bezeichnungen immer noch auf. Aus diesem Grunde werden als Hilfestellung hier (nach dem derzeitigen Stand) die alten und neuen Symbole aufgelistet!

Bezeichnung	Symbol	altes Symbol	Einheit	Anmerkungen Kapitel im Skript/ Quelle/
Absolute Feuchte,	C _D		[kg/m³]	Kap. 1.1
Konzentration				
Temperaturfaktor	f	⊕ [gr. Theta]	[]	Kap. 6.3.2
Druckdifferenz	Δр		[Pa]	Kap. 2.1
Feuchtegehalt, massebez.	u	u _m	[%]	Kap. 5.1
Fugendurchlaßkoeffizient	а		[m ³ /(mh(daPa) ^{2/3})]	Kap. 2.1
Gaskonstante	R		[kJ/(kg K)]	Kap. 1.1
Länge	I oder L			Kap. 2.1
Luftwechselrate	n		[m] [h ⁻¹]	Kap. 2.1
Masse	m		[kg]	Kap. 1.1
Massenstrom	m		[g/h]	Kap. 2.1
Partial- oder Teildruck	р		[Pa]	Kap. 1.1
relative Luftfeuchte	φ [gr. Phi]	φ [kl. Phi]	[]	Kap. 1.1
Rohdichte	ρ [kl. Rho]		[kg/m ³]	Kap. 5.1
Rohdichte der trockenen Luft	ρ [kl. Rho]		[kg tr. L./m ³]	Kap. 1.1
Schichtdicke	d	s	[m]	Kap. 2.2
Spaltbreite	s		[mm]	Kap. 2.1
Stoffübergangskoeffizient	β [kl. Beta]		[kg/(m²hPa)]	Kap. 2.2
Tauwassermasse,	m _{W,T}	W _T	[kg/m ²]	Kap. 7.1.3
flächenbezogen				
Temperatur	\mathbf{T} θ [kl. Theta]	ᢒ [kl. Theta]	[k] [°C]	Kap. 1.1
Verdunstungsmasse, flächenbezogen	m _{W,V}	W _V	[kg/m ²]	Kap. 7.1.3
Volumen	V		[m ³]	Kap. 1.1
Volumenstrom	Ÿ		[m ³ /h]	Kap. 2.1
Wärmedurchgangskoeffizient	U	k	[W/(m ² K)]	Kap. 6.2.3
Wärmedurchlaßwiderstand (Resistance)	R	1/Λ	[(m ² K)/W]	Kap. 2.2/ DIN 6946
Wärmeleitfähigkeit	λ [kl. Lambda]		[W/(mK)]	Кар. 1.2
Wärmestromdichte	q		[W/m ²]	Kap. 2.2
Wärmeübergangskoeffizient	h	α [kl. Alpha]	[W/(m ² K)]	Kap. 2.2/ DIN 6946
Wärmeübergangswiderstand	R _s	1/α	[m ² K/W]	Kap. 2.2/ DIN 6946
Wasseraufnahmekoeffizient	w		[kg/(m ² h ^{1/2})]	Kap. 4
Wasserdampf-diffusionsäquivalente Luftschichtdicke oder Sperrwert	S _d		[m]	Kap. 2.2

Bezeichnung	Symbol	altes Symbol	Einheit	Anmerkungen Kapitel im Skript/ Quelle/
Wasserdampf-Diffusions- durchlaßwiderstand	Z	1/∆	[m²hPa/kg]	Kap. 2.2
Wasserdampf- Diffusionsleitkoeffizient	δ [kl. Delta]		[kg/(mhPa)]	Kap. 2.2
Wasserdampf-Diffusions- stromdichte	g	i	[kg/(m ² h)]	Kap. 2.2
Wasserdampf- Diffusionswiderstandszahl	μ [kl. My]		[]	Kap. 2.2
Wasserdampfgehalt	ν [kl. Ny]		[kg/kg tr. L.]	Kap. 1.1
Wassergehalt	u		[%]	Kap. 5.1
Zeit (<u>t</u> ime)	t		[h]	Kap. 4

Häufig verwendete Indizees

Indizee steht für	Zeichen	altes Zeichen	abgeleitet aus dem Wort	Erläuterung / taucht häufig auf im Zusammenhang mit	Quelle
außen	е	а	<u>e</u> xternal	α, q	DIN 6946
feucht	f			m	
innen	i	i	<u>i</u> nternal	α, q	DIN 6946
Luft	L			р	
Luft außen	е	Li	<u>e</u> xternal	θ, θ	
Luft innen	i	La	<u>i</u> nternal	θ, θ	
massebezogen	M			U	
Material	M			s,μ,δ	
Oberfläche außen	se	Oa	<u>s</u> urface <u>e</u> xternal	R _s , θ, θ	DIN 6946
Oberfläche innen	si	Oi	surface internal	R _s , θ, θ	DIN 6946
Raum	R		-	V	
Stoff	S			ρ	
Tauperiode	Т			W	
trocken	t			μ	
Verdunstungs-	V			W	
periode					
volumenbezogen	V			u	
Wasser	W			M	
Wasserdampf	D			p	

Griechisches Alphabet

A α	Ββ	Γγ	Δ δ	Εε	Ζ ζ	Η η	Θθ(θ)
Alpha	Beta	Gamma	Delta	Epsilon	Zeta	Eta	Theta
Ιι	К к	Λ λ	M μ	N v	Ξξ	O o	Π π
Jota	Карра	Lambda	My	Ny	Xi	Omikron	Pi
P ρ	Σ σ	Ττ	Υυ	Φ φ	Χχ	Ψψ	Ω ω
Rho	Sigma	Tau	Ypsilon	Phi	Chi	Psi	Omega