

Optimierung von Heizungsanlagen im Bestand

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

1

Optimierung von Bestandsanlagen

"Problem" Anlagentechnik:

 Oft weicht die real ausgeführte Anlage von dem "theoretisch angenommenen Idealzustand" ab. Es besteh ein:

"Verschwendungspotenzial der Anlagentechnik"

- Häufiger Grund: Leistungsüberangebot:
 - Heizflächen überdimensioniert
 - Pumpe überdimensioniert und/oder auf höchster Stufe ("3") in Betrieb
 - Thermostatventile nicht voreingestellt ("N") oder Rücklaufverschraubungen voll offen
 - zentrale Regler auf Werkseinstellung (75°C Vorlauftemperatur u. a.)
- weiterhin: fehlende Dämmung von Komponenten

Auswirkungen fehlender Qualität

- ungleichmäßige Aufheizung von Räumen oder insgesamt Ungleichversorgung
- Geräusche in der Anlage
- verminderter Brennwertnutzen
- zu hohe Anschlusskosten für die Fernwärme
- zu hoher Elektroenergieverbrauch
- zu hoher thermischer Energieverbrauch

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

Optimierung von Bestandsanlagen

Maßnahmen im Rahmen des Qualitätssicherungspaket "Heizung":

- Berechnung der Raumheizlast und der benötigten Vorlauftemperatur
- · Berechnung der Druckverluste im Rohrnetz
- Auslegung der Umwälzpumpe
- · Auswahl und Voreinstellung der Thermostatventile
- · Anpassung der Heizungsregelung

Unmittelbar von der Optimierung betroffene Komponenten

Hydraulik

- Pumpe und/oder Differenzdruckregler
 - Förderhöhe bzw. eingestellter Differenzdruck
- Thermostatventile
- Rücklaufverschraubungen der Heizkörper evt. auch
- Strangregulierventile
 - Eingestellter Volumenstrom
- Überströmventile
 - Eingestellter Ansprechdruck

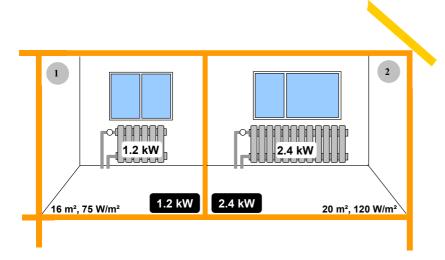
Regelung

Heizkurve (Vorlauftemperaturen)

Volumenstrom und Temperaturdifferenz
→ Heizleistung

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

į

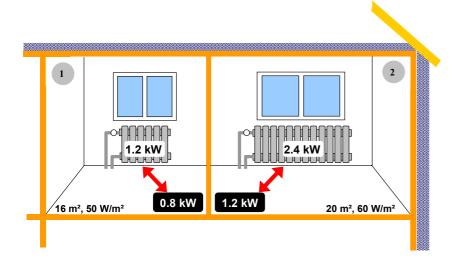

Optimierung von Bestandsanlagen

Warum optimieren?

Zwei Räume im ursprünglichen Zustand ...

Situation vorher:

- · 2 Räume.
- Temperaturniveau: 80/60°C.
- Je ein Heizkörper, passend zur Heizlast und zum gewählten Temperaturniveau (Plandaten sind bekannt).


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

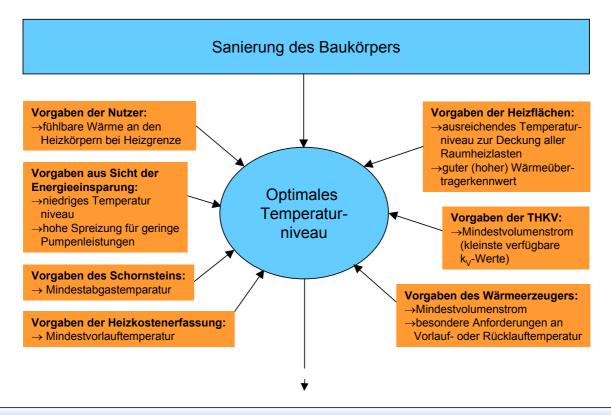
7

Optimierung von Bestandsanlagen

... und nach der Optimierung

Situation nach der Sanierung:

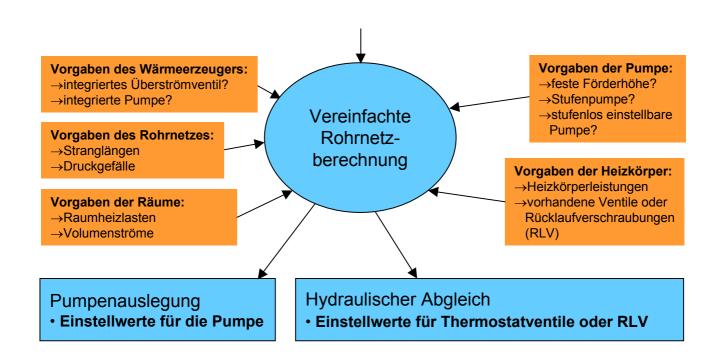
Für Raum 1 verringert sich die Heizlast auf **67** % des alten Wertes.


Für Raum 2 auf **50** % des alten Wertes.

(Die Leistungen der Heizkörper gelten für das alte Temperaturniveau 80/60°C)

es besteht ein Verschwendungspotential!

Was zu beachten ist - Überblick

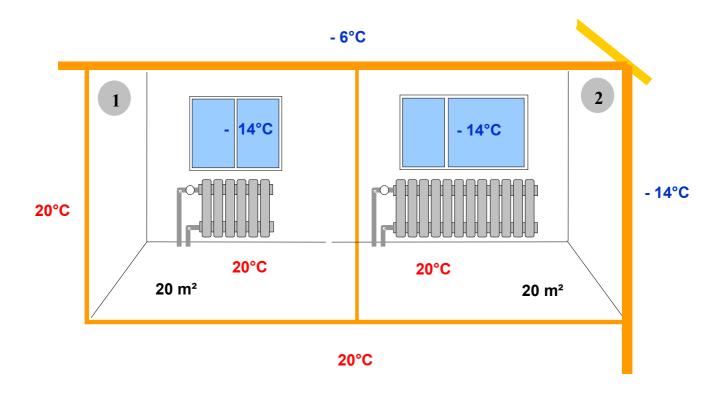

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

9

Optimierung von Bestandsanlagen

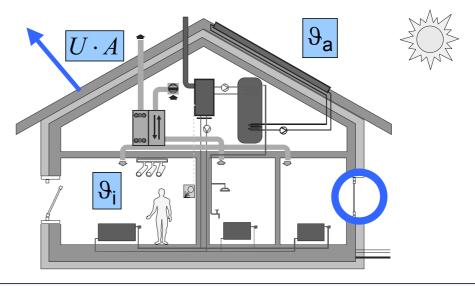
Was zu beachten ist - Überblick

Heizlastberechnung nach der baulichen Veränderung


Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

11

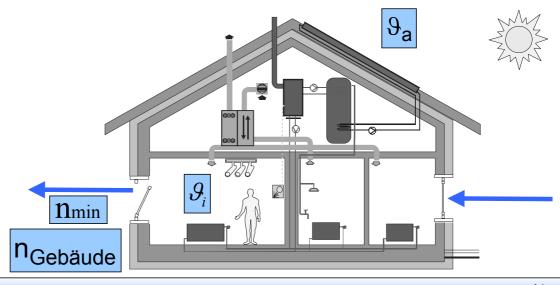
Optimierung von Bestandsanlagen


Vereinfachte Heizlastberechnung – Beispielraum 1 und 2

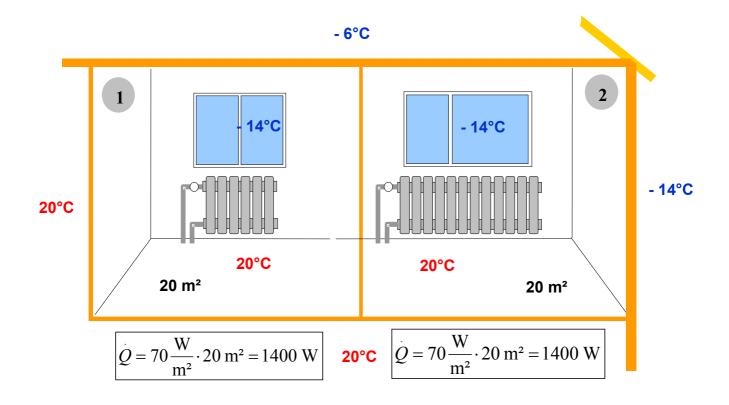
Heizlast für Transmission

$$Q_T = U \cdot A \cdot (\vartheta_i - \vartheta_a)$$

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

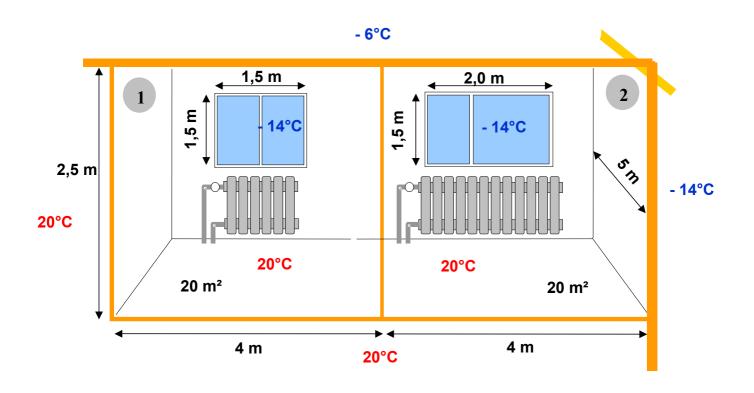

13

Optimierung von Bestandsanlagen


Heizlast für Lüftung

$$Q_V = n \cdot \rho \cdot c_p \cdot V_L \cdot (\theta_i - \theta_a)$$

Vereinfachte Heizlastberechnung – pauschal nach Grundfläche


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

15

Optimierung von Bestandsanlagen

Vereinfachte Heizlastberechnung – nach "Außen"-Flächen

Vereinfachte Heizlastberechnung n. "Außen"-Flächen – Raum 1

$$\dot{Q}_{T} = U \cdot A \cdot (\vartheta_{i} - \vartheta_{a})$$

$$\dot{Q}_{AF} = 2.5 \frac{W}{m^{2} \cdot K} \cdot 2.25 \, m^{2} \cdot (20^{\circ}C - (-14^{\circ}C)) = 191 \, W$$

$$\dot{Q}_{AW} = 1.0 \frac{W}{m^{2} \cdot K} \cdot 7.75 \, m^{2} \cdot (20^{\circ}C - (-14^{\circ}C)) = 264 \, W$$

$$\dot{Q}_{D} = 1.0 \frac{W}{m^{2} \cdot K} \cdot 20.0 \, m^{2} \cdot (20^{\circ}C - (-6^{\circ}C)) = 520 \, W$$

$$Q_V = n \cdot \rho \cdot c_p \cdot V_L \cdot (\theta_i - \theta_a) = 0.5 \frac{1}{h} \cdot 0.34 \frac{Wh}{m^3 K} \cdot 50 \text{ m}^3 \cdot (20^{\circ}\text{C} - (-14^{\circ}\text{C})) = 289 \text{ W}$$

$$\dot{Q} = \dot{Q}_T + \dot{Q}_V = 975 \text{ W} + 289 \text{ W} = 1264 \text{ W}$$

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

17

Optimierung von Bestandsanlagen

Vereinfachte Heizlastberechnung n. "Außen"-Flächen – Raum 2

$$\begin{split} \dot{Q}_{\text{AF}} &= 2.5 \frac{W}{m^2 \cdot K} \cdot 3.0 \ m^2 \cdot (20^{\circ}\text{C} - (-14^{\circ}\text{C})) = 255 \ W \\ \dot{Q}_{\text{AW1}} &= 1.0 \frac{W}{m^2 \cdot K} \cdot 7.0 \ m^2 \cdot (20^{\circ}\text{C} - (-14^{\circ}\text{C})) = 238 \ W \\ \dot{Q}_{\text{AW2}} &= 1.0 \frac{W}{m^2 \cdot K} \cdot 12.5 \ m^2 \cdot (20^{\circ}\text{C} - (-14^{\circ}\text{C})) = 425 \ W \\ \dot{Q}_{\text{D}} &= 1.0 \frac{W}{m^2 \cdot K} \cdot 20.0 \ m^2 \cdot (20^{\circ}\text{C} - (-6^{\circ}\text{C})) = 520 \ W \end{split}$$

$$Q_V = n \cdot \rho \cdot c_\rho \cdot V_L \cdot (\beta_i - \beta_a) = 0.5 \frac{1}{h} \cdot 0.34 \frac{Wh}{m^3 K} \cdot 50 \text{ m}^3 \cdot (20^{\circ}\text{C} - (-14^{\circ}\text{C})) = 289 \text{ W}$$

$$\dot{Q} = \dot{Q}_T + \dot{Q}_V = 1438 \text{ W} + 289 \text{ W} = 1727 \text{ W}$$

Vereinfachte Heizlastberechnung

Raum 1

$$Q = 70 \frac{W}{m^2} \cdot 28 m^2 = 1400 \text{ W}$$

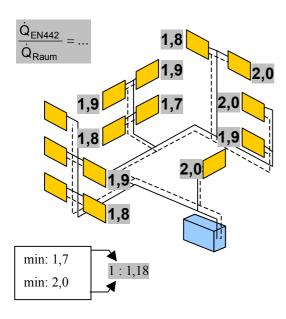
$$\dot{Q} = \dot{Q}_T + \dot{Q}_V = 975 \text{ W} + 289 \text{ W} = 1264 \text{ W}$$

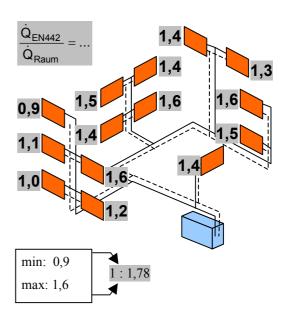
Fazit: Die pauschale Heizlastberechnung nach Grundfläche ist zur raumweisen Bestimmung der Heizlast ungeeignet.

Raum 2

$$Q = 70 \frac{W}{m^2} \cdot 20 m^2 = 1400 \text{ W}$$

$$\dot{Q} = \dot{Q}_T + \dot{Q}_V = 1438 \text{ W} + 289 \text{ W} = 1727 \text{ W}$$


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel


19

Optimierung von Bestandsanlagen

Auslegungstypen

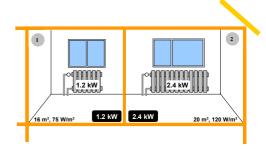
Heizungsanlage mit einheitlicher (links) und mit uneinheitlicher Heizkörperauslegung (rechts)

→ je nach Auslegungstyp ergibt sich eine andere Rohrnetzberechnung

Überdimensionierung und Übertemperatur von Heizkörpern

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

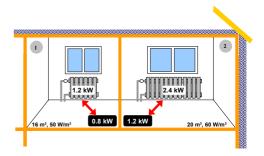
21


Optimierung von Bestandsanlagen

Bestimmung der notwendigen Übertemperatur nach der Sanierung

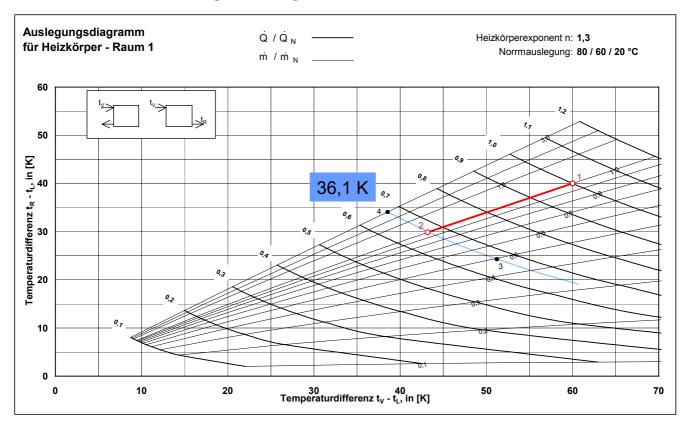
vorhandener Wert im alten Zustand

$$\Delta \vartheta_{\text{In,alt}} = \frac{\vartheta_{\text{V}} - \vartheta_{\text{R}}}{\ln \frac{\vartheta_{\text{V}} - \vartheta_{\text{L}}}{\vartheta_{\text{R}} - \vartheta_{\text{L}}}} = \frac{80 - 60}{\ln \frac{80 - 20}{60 - 20}} K = 49,3K$$



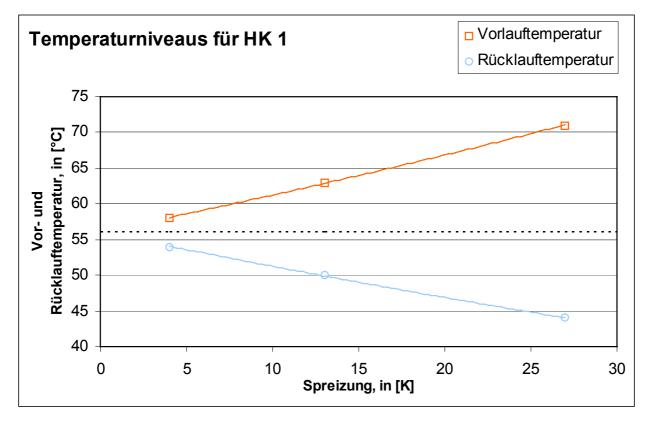
Umrechnung

$$\frac{\dot{Q}_{\text{neu}}}{\dot{Q}_{\text{alt}}} = \left(\frac{\Delta \vartheta_{\text{In,neu}}}{\Delta \vartheta_{\text{In,alt}}}\right)^{n}$$


Wert im neuen Zustand

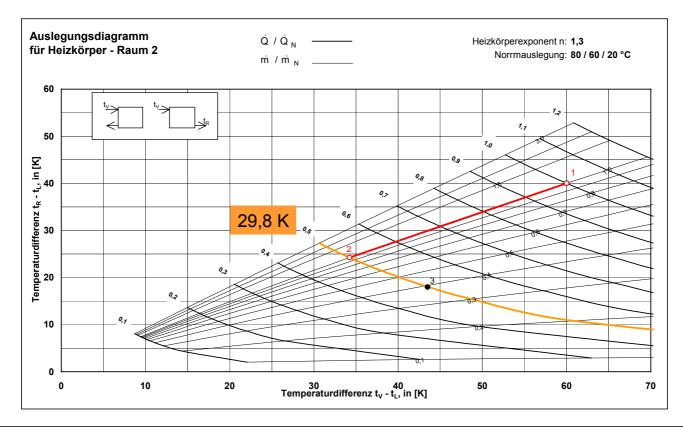
$$\Delta \vartheta_{ln,neu} = \Delta \vartheta_{ln,alt} \cdot \left(\frac{\dot{Q}_{neu}}{\dot{Q}_{alt}}\right)^{1/n} = 49,3 \text{K} \cdot \left(\frac{0,8 \text{kW}}{1,2 \text{kW}}\right)^{1/1,3} = 36,1 \text{K}$$

Graphische Darstellung des Ergebnisses für Raum 1


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

23

Optimierung von Bestandsanlagen



Mögliche Temperaturpaarungen für Raum 1

Graphische Darstellung des Ergebnisses für Raum 2

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

25

Optimierung von Bestandsanlagen

Praktisches Vorgehen

Wenn nicht bekannt ist:

- welches Temperaturniveau in der Altanlage gefahren wird (die Vorlauftemperatur kann über die Reglereinstellungen ermittelt werden, die sich einstellende Rücklauftemperatur ist aber in der Regel unbekannt),
- ob die vorhandenen Heizkörper **passend zur alten Heizlast dimensioniert** waren und
- welche Heizlasten vor der Sanierung überhaupt vorlagen,

ist wie nachfolgend beschrieben zu verfahren.

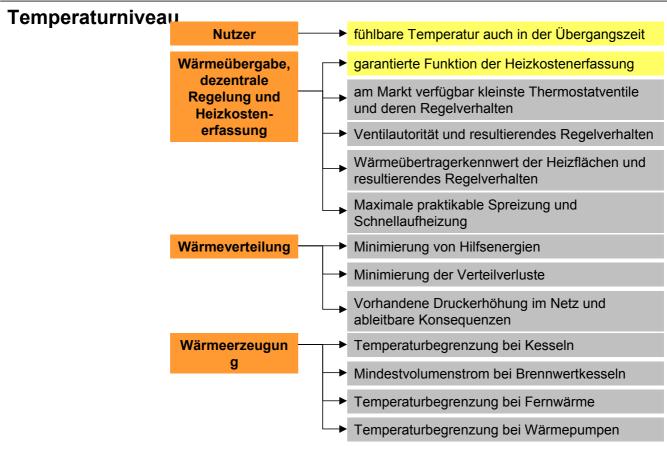
Anstelle des "alten" Zustandes vor der Sanierung, für den die Daten fehlen, ist der "Normzustand des Heizkörpers" einzusetzen. Das bedeutet:, statt der "alten" logarithmischen Übertemperatur ist die "Übertemperatur bei Normtemperaturen" zu verwenden. Diese Normtemperaturen sind in der EN 442 mit 75/65/20°C festgelegt.

Einflüsse auf das Temperaturniveau einer Heizungsanlage

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

27

Optimierung von Bestandsanlagen



Überblick

Optimierung von Bestandsanlagen

Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

29

Optimierung von Bestandsanlagen

Fühlbare Temperatur, Heizkostenerfassung

- MFH: Setzt man bei etwa 12 °C Außentemperatur voraus, dass die Vorlauftemperatur wenigstens 30 °C erreicht, damit ein "Wärmeeindruck" entsteht, dann muss die **Auslegungsvorlauftemperatur 65**°C und mehr betragen
- EFH: meist nicht relevant
- konventionelle Verdunster: mittlere Heizkörpertemperatur bei der Auslegung über 55...60 °C
- elektronische Ein- und Zweifühlergeräte ist ein Einsatz ab ca. 30...35 °C
- die mittlere Heizkörpertemperatur stellt sich unabhängig von der Wahl der Vor- und Rücklauftemperatur ein, denn es handelt sich um den Mittelwert aus beiden (wird nur von der Überdimensionierung des Heizkörpers bestimmt)

Optimierung von Bestandsanlagen

Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

31

Optimierung von Bestandsanlagen

Welche Funktion sollen die Thermostatheizkörperventile erfüllen?

- Die eigentliche Funktion der Thermostatventile besteht darin, vorhandene innere und solare Gewinne nutzbar zu machen.
 - Wenn sich die Raumtemperatur aufgrund von Wärmegewinnen erhöht, drosselt das Thermostatventil den Volumenstrom, der durch den Heizkörper fließt und vermindert so dessen Leistung. Die Raumtemperatur bleibt konstant.
- Voraussetzung ist die richtige Einstellung der Heizkurve (Vorlauftemperatur)
 - Wenn die Heizkurve zu hoch eingestellt ist, müssen die THKVs zusätzlich zu den anfallenden Gewinnen auch das Überangebot an Leistung kompensieren, das aus der erhöhten Vorlauftemperatur resultiert. Infolgedessen verschlechtert sich das Regelverhalten.

Ventilautorität

$$a_V = \frac{\Delta p_{THKV}}{\Delta p_{Verfügbar}} = \frac{\Delta p_{THKV}}{\Delta p_{THKV} + \Delta p_{Netz}}$$

Das Regelverhalten ist umso besser, je höher die Ventilautorität a_V ist. Sie kann maximal 1,0 werden, wenn der Druckabfall im restlichen Netz vernachlässigbar klein ist.

In der Praxis hat sich bewährt, die **Ventilautorität** für den im Netz am hydraulisch ungünstigst gelegenen Heizkörper **nicht kleiner als a_V = 0,30** zu wählen. Hydraulisch ungünstig heißt: der Druckverlust in den Vor- und Rückleitungen ist für diesen Heizkörper am größten verglichen mit allen anderen Heizkörpern.

Alle anderen, hydraulisch günstiger gelegenen Heizkörper weisen dann bessere (größere) Ventilautoritäten auf, weil die Netzdruckverluste kleiner sind, die Pumpendruckerhöhung aber gleich bleibt.

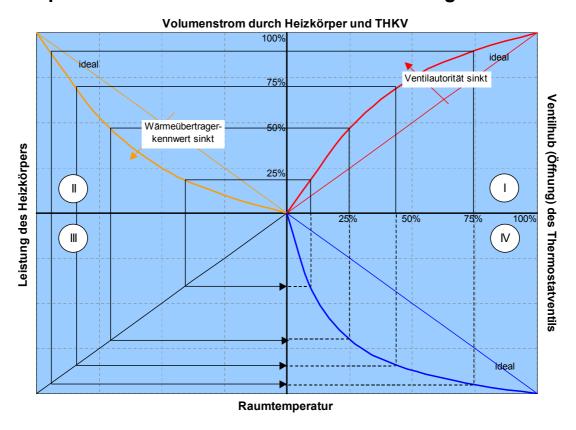
Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

33

Optimierung von Bestandsanlagen

Wärmeübertragerkennwert der Heizflächen

$$a = \frac{9_{V,A} - 9_{R,A}}{9_{V,A} - 9_{L}}$$


Das Regelverhalten der Heizfläche ist umso besser, je höher der Wärmeübertragerkennwert a ist. Er kann im besten Fall 1,0 betragen. In diesem idealen Fall verhalten sich der Volumenstrom durch den Heizkörper und seine Leistungsabgabe proportional zueinander.

Um eine einigermaßen gute Regelbarkeit zu gewährleisten, sollte der **Wärmeübertragerkennwert a** für den thermisch ungünstigsten Heizkörper so groß wie möglich sein, jedoch **nicht kleiner als 0,2**.

Alle thermisch günstigeren Heizkörper weisen eine größere Überdimensionierung auf. Hier werden geringere Übertemperaturen benötigt, es stellen sich niedrigere Rücklauftemperaturen ein. Die Wärmeübertragerkennwerte sind größer und damit besser als am thermisch ungünstigsten Heizkörper.

Zusammenspiel von Ventilautorität und Wärmeübertragerkennwert



Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

35

Optimierung von Bestandsanlagen

ky-Wert und P-Bereich von Ventile

$$k_V = \dot{V}_{THKV} \cdot \sqrt{\frac{1 \text{ bar}}{\Delta p_{THKV}}}$$

Auf den k_V -Wert, den die Bedingungen für den Auslegungsfall vorgeben, muss das Ventil ausgelegt werden. Dazu werden Herstellerunterlagen - in Form von Tabellen oder Diagrammen - herangezogen.

Der P-Bereich gibt an, wieviel Grad Celsius (oder Kelvin) Raumtemperaturerhöhung dazu führen, dass das Ventil vom Auslegungszustand (z.B. 20°C Raumtemperatur) ausgehend schließt. Ein P-Bereich von 2 K bedeutet, dass bei 22°C Raumtemperatur das Ventil voll geschlossen ist.

Es hat sich sowohl aus Gründen der Energieeinsparung als auch aus Gründen der Regelbarkeit als praktikabel erwiesen, den P-Bereich im Bereich von 0,7 bis 2,0 K zu wählen.

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

37

Optimierung von Bestandsanlagen

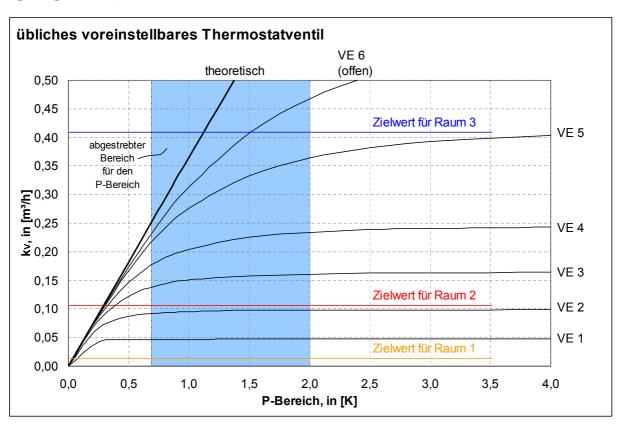
Bauarten von Thermostatventilen

- Nicht voreinstellbare THKVs
- Voreinstellbare THKVs
- THKVs mit angepassten k_v-Kegeln
- THKVs mit eingebautem Differenzdruckregler

Auslegungsbeispiel für den k_v-Wert

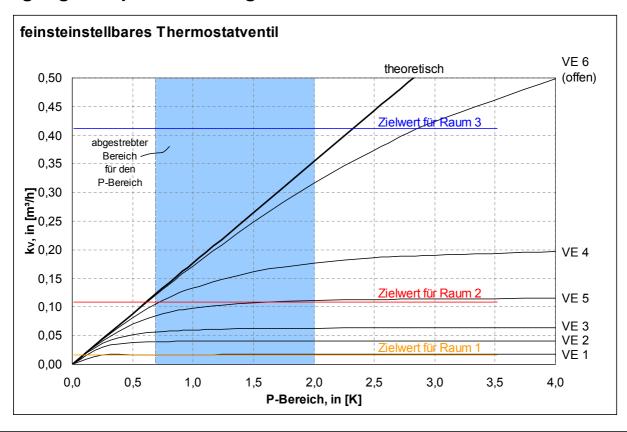
Raum	1	2	3
	kleineres		kleineres
	Kinderzimmer		Wohnzimmer in
	in einem		einem älteren
	Niedrigenergie		Mehrfamilienha
	gebäude		us
bezogene Heizlast, in [W/m²]	30	60	100
Raumfläche, in [m²]	8	12	16
Heizlast, in [W]	240	720	1600
Temperaturspreizung, in [K]	20	15	10
Volumenstrom, [m³/h]	0,010	0,041	0,092
Druckabfall über dem Ventil, in [mbar]	250	150	50
k_V , in $[m^2/h]$	0,02	0,11	0,41

Die drei Ventile (bzw. deren Voreinstellung), die gewählt werden, sollen jeweils P-Bereiche von 0,7...2,0 K aufweisen.


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

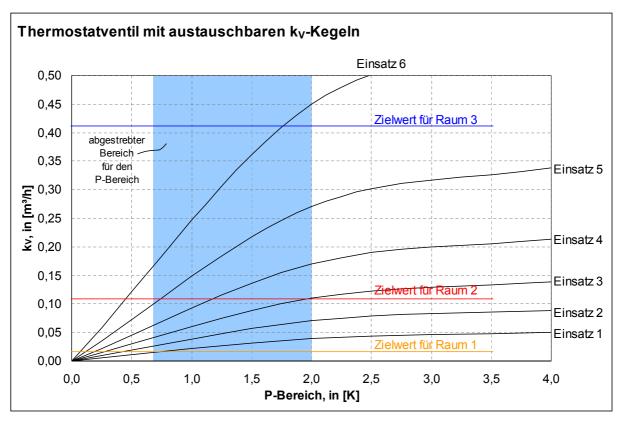
39

Optimierung von Bestandsanlagen



Auslegungsbeispiel: Übliches THKV

Auslegungsbeispiel: Feinstregulierbares THKV


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

41

Optimierung von Bestandsanlagen

Auslegungsbeispiel: THKV mit austauschbaren Kegeln

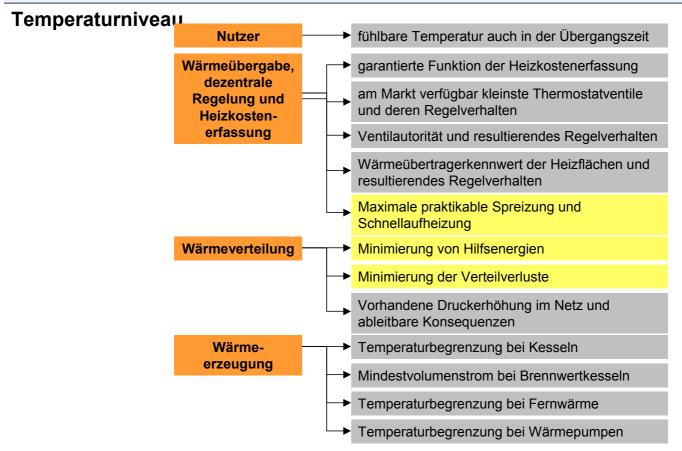
THKVs mit eingebautem Differenzdruckregler

- Vorteil:
 - Sehr gute Regelbarkeit
 - Eingestellter Volumenstrom wird bei geöffnetem Ventil unter allen Betriebsbedingungen absolut konstant gehalten, Druckschwankungen im restlichen Netz, die durch andere THKVs hervorgerufen werden, haben keinen Einfluss auf das Regelverhalten des Ventils
 - Keine Geräuschprobleme, selbst bei sehr hohen Differenzdrücken über dem Ventil
- Nachteil:
 - Bisher gibt es nur Ventilgrößen, die auf relativ hohe Volumenströme ausgelegt sind (> 35 l/h)
 - Etwa doppelt so hoher Preis wie normale THKVs

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

43

Optimierung von Bestandsanlagen


Einsatzgrenzen heute verfügbarer THKV

Die **Einsatzgrenze** der heute verfügbaren **voreinstellbaren Ventile** liegt bei einem minimalen k_v -Wert von 0,02 m³/h.

Die Einschränkung der minimalen **Einsatzgrenze** auf einen k_V -Wert von 0,02 m^3/h kann auch für Thermostatventile mit austauschbaren Ventilkegeln aufrecht erhalten werden. Unterhalb dieses Wertes lassen sich keine einsetzbaren Kegel mehr finden.

Optimierung von Bestandsanlagen

Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

45

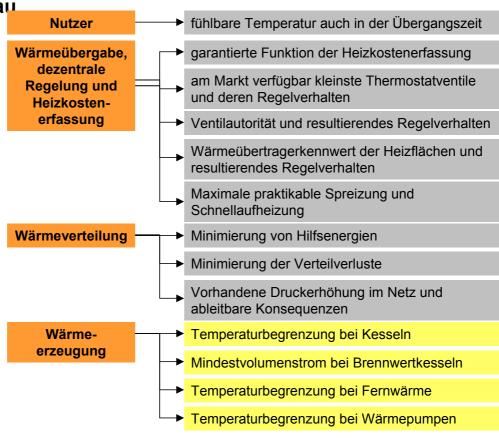
Optimierung von Bestandsanlagen

Maximale Systemspreizung, Minimierung der Verteilverluste und Hilfsenergien

Bei der Wahl des Auslegungstemperaturniveaus sollte darauf geachtet werden, dass die Spreizung zwischen Vorlauf- und Gesamtrücklauftemperatur im Netz **nicht mehr als 25 Kelvin** beträgt.

Die Spreizung an den thermisch ungünstigen Heizkörpern im Netz ist dabei kleiner als 25 K, an thermisch günstigen Heizkörpern stellt sich eine höhere Spreizung ein.

Es werden dadurch nicht allzu "exotische" Temperaturniveaus nach der Optimierung zustande kommen. Die Begrenzung stellt außerdem sicher, dass die Totzeiten im Netz - wegen sehr geringer Volumenströme - nicht zu hoch werden und die Temperaturschichtung in den Heizkörpern für den Nutzer akzeptabel ist. Die Kessel/Pumpenregelung einzelner Kessel lässt mehr nicht zu.


Verteilverluste werden praktisch von der Wahl des Temperaturniveaus nicht berührt, weil die mittlere Temperatur fest ist.

Für geringe Hilfsenergien ist ein große Spreizung zu wählen.

Optimierung von Bestandsanlagen

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

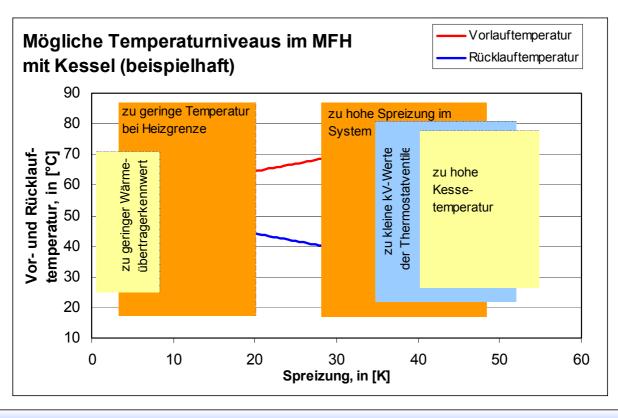
47

Optimierung von Bestandsanlagen

Vorgaben des Wärmeerzeugers

- geringe Rücklauf-Temperaturen bei Brennwertkesseln
- hohe Spreizungen und geringe Rücklauftemperaturen bei Fernwärme
- Mindestvolumenstrom bei Thermen
- Anforderungen von Konstanttemperaturkesseln
- geringe mittlere Temperaturen und Vorlauftemperaturen von Wärmepumpen

Wahl des optimalen Temperaturniveaus


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

49

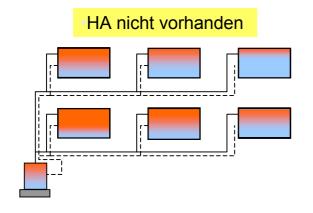
Optimierung von Bestandsanlagen

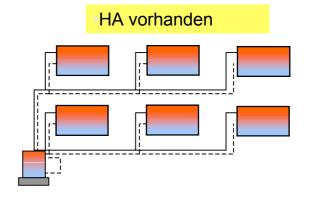
Temperaturniveau in einem MFH mit Kessel

Temperaturniveau in einem EFH mit Wärmepumpe

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

51


Optimierung von Bestandsanlagen



Hydraulischer Abgleich

Hydraulischer Abgleich: Definition und Nutzen

Unter Hydraulischem Abgleich von Heizungsanlagen versteht man das Einbringen definierter Festwiderstände in das Rohrnetz mit dem Ziel, jeden Verbraucher mit dem geplanten Volumenstrom zu versorgen.

Die Festwiderstände müssen dazu dezentral in der Anbindeleitung (Vor- oder Rücklauf) eines Verbrauchers mit eigener Einrichtung zur Einzelraumregelung (z. B. THKV) angeordnet werden. Es kann sich um die Voreinstellung von Thermostatventilen, einstellbare Rücklaufverschraubungen oder sonstige Einstelldrosseln handeln.

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

53

Optimierung von Bestandsanlagen

Was passiert, wenn der hydraulisch Abgleich nicht durchgeführt wird?

Problem: Einzelne Räume werden nicht ausreichend beheizt

Häufig durchgeführte "Behelfslösung":

- Erhöhung der Pumpenleistung (Pumpe wird auf höchstmögliche Drehzahl einstellt)
- Falls die Erhöhung der Pumpenleistung nicht ausreicht oder die Pumpe bereits auf der höchsten Stufe läuft, wird im nächsten Schritt oft die Heizkurve angehoben bzw. steiler eingestellt → höhere Vorlauftemperaturen

Behelfslösung und die Folgen

- Ungleichmäßige Wärmeabgabe
 - Pumpennahe Heizkörper werden überversorgt.
 - → An den entsprechenden Heizkörpern wird ein Verschwendungspotenzial zur Verfügung gestellt.
- · Geräusche in der Anlage
 - Durch die erhöhte Pumpenleistung treten insbesondere in den hydraulisch günstigen Rohrleitungsabschnitten mit kleinen Durchmessern und in den Thermostatventilen lästige Strömungs- und Pfeifgeräusche auf.
- Ungleichmäßige Aufheizzeiten
 - Die Aufheizzeiten der einzelnen Räume nach Absenkphasen weichen in hydraulisch nicht abgeglichenen Netzen stark voneinander ab.

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

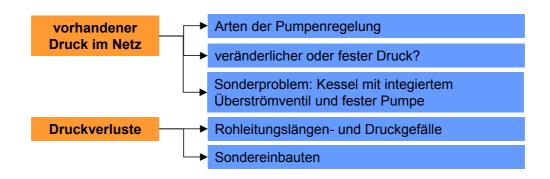
55

Optimierung von Bestandsanlagen

Behelfslösung und die Folgen

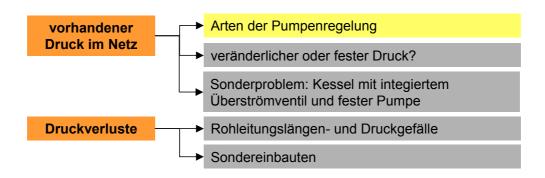
- Hohe Rücklauftemperaturen
 - Insbesondere in den Aufheizzeiten stellen sich an den nicht abgeglichenen Heizkörpern hohe Volumenströme ein. Die Folge sind hohe Rücklauftemperaturen. Dies führt direkt zu einem verminderten Brennwertnutzen und zur Nichteinhaltung der erlaubten Rücklauftemperatur bei Nah- und Fernwärmenetzen.
- Unnötig hohe Pumpenleistung
 - Um trotz nicht abgeglichener Anlage alle Heizflächen ausreichend mit Wärme versorgen zu können, muss die Pumpe mit einer höheren Leistung betrieben werden und verbraucht daher mehr elektrische Energie als in einem abgeglichenen System (Achtung: Primärenergiefaktor f_P = 3,0!)
- Anlage entspricht nicht den "Allgemein anerkannten Regeln der Technik"
 - Laut VOB (Teil C) im Zusammenspiel mit DIN 18380 wird der hydraulische Abgleich explizit gefordert.

Überschlägige Rohrnetzberechnung


Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

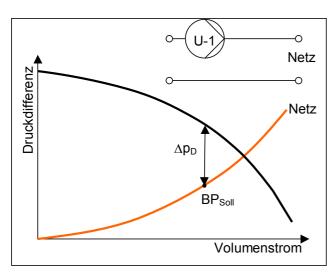
57

Optimierung von Bestandsanlagen

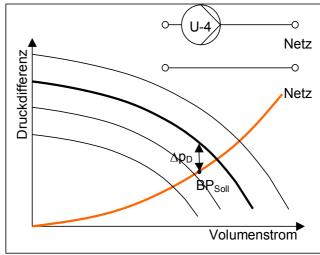


Überblick über die überschlägige Rohrnetzberechnung

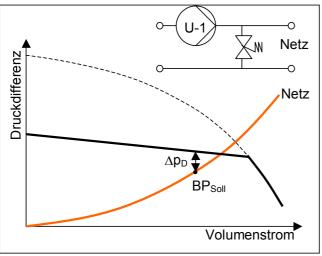
Überblick über die überschlägige Rohrnetzberechnung


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

59


Optimierung von Bestandsanlagen

Arten der Pumpenregelung


ungeregelte Pumpe, einstufig

ungeregelte Pumpe, vierstufig

2

Arten der Pumpenregelung

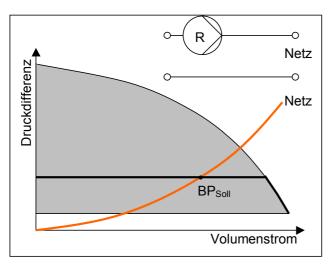
Netz

Netz

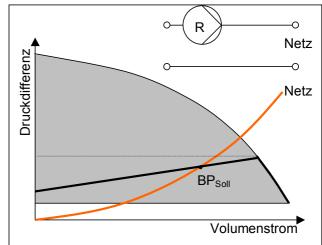
Volumenstrom

ungeregelte Pumpe und Überströmventil

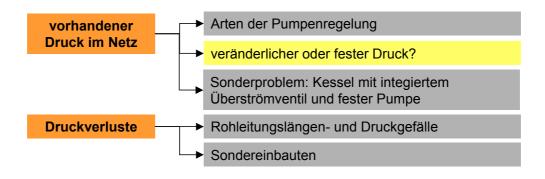
ungeregelte Pumpe und Differenzdruckregler


Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

61


Optimierung von Bestandsanlagen

Arten der Pumpenregelung


regelbare Pumpe, ∆p-Konstant-Regelung

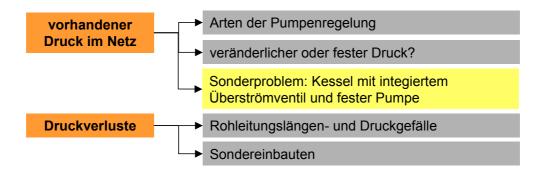
regelbare Pumpe, ∆p-Variabel-Regelung

Überblick über die überschlägige Rohrnetzberechnung

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

63

Optimierung von Bestandsanlagen



Veränderbarkeit des Druckes?

Überblick über die überschlägige Rohrnetzberechnung

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

65

Optimierung von Bestandsanlagen

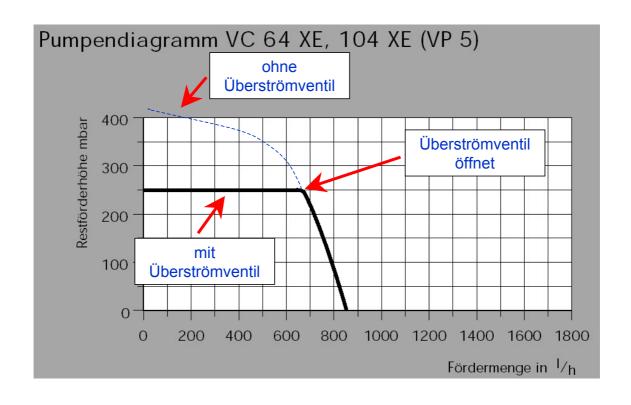
Brennerleistung

- Die maximale Brennerleistung sollte möglichst genau so groß sein wie die Gebäudeheizlast.
 - Bei einer zu hohen Brennerleistung wird der Kessel zum Ein-/ Ausbetrieb (Takten) gezwungen. Dadurch entstehen erhöhte Emissionen und unnötige Verluste (Vorspülen). Ebenfalls erhöht sich der Verschleiß.
- Bei modulierenden Geräten kann die maximal gewünschte Leistung für den Heizbetrieb oft einfach über die Regelung einprogrammiert werden.
- Achtung: Wird die Kesselleistung und damit der Abgasmassenstrom/Abgastemperatur herabgesetzt, besteht je nach Schornsteinsystem die Gefahr der Versottung. Die Eignung des Schornsteins ist daher zu prüfen!

Wandgerät oder bodenstehender Kessel

· Wandgeräte:

- Weisen bauartbedingt meist hohe Druckverluste auf und benötigen deshalb höhere Pumpenleistungen.
- Werden in der Regel standardmäßig mit einer integrierten Pumpe ausgestattet, die einen sehr großen Leistungsbereich abdecken muss und daher fast immer überdimensioniert ist.
- Restförderhöhe kann nur bei sehr wenigen Geräten vorgegeben werden (dp-const-Regelung), häufig wird die Pumpendrehzahl einfach parallel zur Brennerleistung gesteuert.
- Häufig benötigen die Wandgeräte einen bestimmten Mindestvolumenstrom, der sie vor Überhitzung schützt → Mindestvolumenstrom wird über Überströmventil sichergestellt → Überströmventil verhindert Brennwertnutzen!


Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

67

Optimierung von Bestandsanlagen

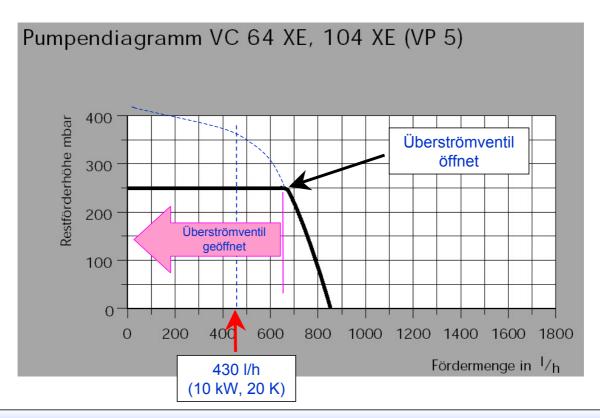
Restförderhöhen-Diagramm des Wandgeräts

Beispiel: Problem Überströmventil

- Ein beispielhaft ausgewähltes Wandgerät besitzt eine maximale Leistung von 10 kW.
- Die Auslegungs-Systemspreizung soll 20 K betragen

Kennwert für benötigten Volumenstrom: 43 l/h je 1 kW bei 20 K Spreizung

- Für das gewählte Gerät ergibt sich bei der gewählten Spreizung ein maximaler Volumenstrom von
 - \rightarrow 43 l/h * 10 kW = 430 l/h


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

69

Optimierung von Bestandsanlagen

Restförderhöhen-Diagramm des Wandgeräts

Beispiel: Fazit

- Bereits im Auslegungsfall (kältester Tag) ist bei dem gezeigten Wandgerät das Überströmventil geöffnet → keine oder kaum noch Brennwertnutzung.
- Bei der Geräteauswahl sollte daher darauf geachtet werden, dass ein Gerät ohne Anforderungen an einen Kesselmindest-volumenstrom gewählt wird, welches weder auf integrierte noch auf externe Überströmventile zurückgreifen muss.

In der Regel weisen Geräte mit einem großen Kesselwasserinhalt nicht die genannten Probleme auf.

Definition "großer Kesselwasserinhalt": 1 bis 1,5 Liter pro 1 kW

Beispiel: Ein Gerät mit 25 kW sollte mindestens einen Kesselwasserinhalt

von 25 I aufweisen.

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

71

Optimierung von Bestandsanlagen

Problem: Restförderhöhe eines Wandgerätes ist zu groß

Ausgangslage: Das bereits angesprochene Wandgerät hat

aufgrund der sehr großen Pumpe und des integrierten Überströmventils eine nahezu konstante, sehr große Förderhöhe von

250 mbar.

Problem: Durch die hohe Förderhöhe können zum

einen Geräuschprobleme an den THKVs

auftreten, zum anderen führt diese

Förderhöhe zu THKVs mit sehr kleinen ky-

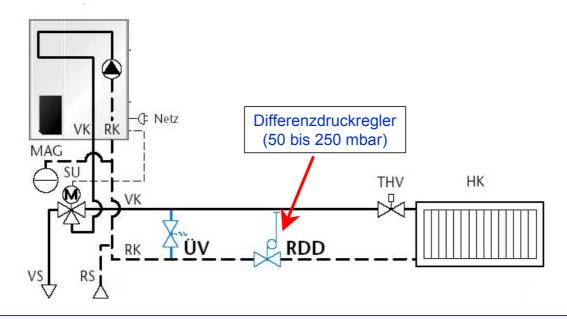
Werten und damit zu sehr starken

Voreinstellungen (VE 1, 2)

Die Nachteile von starken Voreinstellungen

sind bereits bekannt: schlechtes

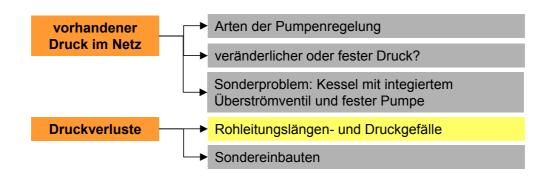
Regelverhalten und erhöhte Verschmutzungs-


gefahr

Problemlösung: Wandgerät mit großer Restförderhöhe

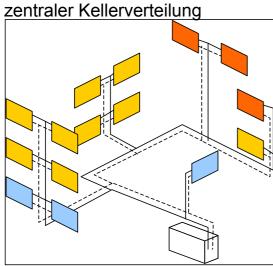
Lösung: Da die Pumpe nicht verändert werden kann, bleibt nur eine Lösung: Es muss ein Differenzdruckregler in

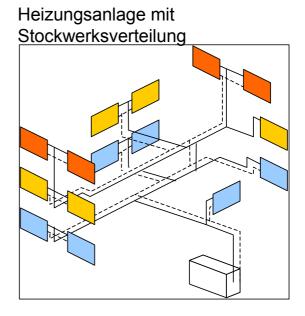
Reihe zu Pumpe eingebaut werden.


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

73

Optimierung von Bestandsanlagen


Überblick über die überschlägige Rohrnetzberechnung



Abschätzen der Leitungslängen

Heizungsanlage mit zentraler Kellerverteilung

In der Praxis: Abschätzung der Lage des Heizkörpers nach "bestem Wissen" innerhalb einer der drei Zonen weit mittel nah

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

75

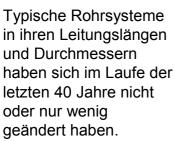
Optimierung von Bestandsanlagen

Problem: Abschätzung der Druckverluste

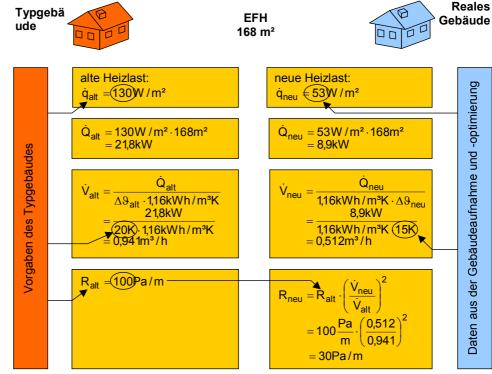
Das größte Problem bei der Abschätzung der Druckverluste im Netz bereitet die Abschätzung der R-Werte (Druckverlust je Meter Rohr) bzw. des hydraulischen Widerstandes im Rohrsystem.

Netze wurden früher meist mit einer bestimmten Spreizung (20 K) und einem bestimmten maximalen R-Wert (100 Pa/m) ausgelegt.

Wird das Gebäude baulich modernisiert, sinkt seine Heizlast. Bei gleicher Spreizung würde der Volumenstrom im selben Verhältnis sinken. Damit sinken Druckverluste und R-Werte quadratisch.

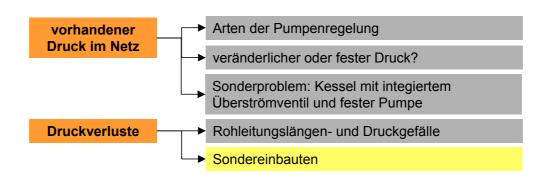

Die neue Heizlast für das Gebäude ist anhand einer überschlägigen (oder genauen) Heizlastberechnung bekannt.

Der Volumenstrom hängt aber auch von der alten und neuen Spreizung ab. Kleinere Systemspreizungen führen nach der Optimierung zu größeren Volumenströmen und Druckverlusten.


In der Regel ist über das Heizsystem nicht bekannt, mit welcher Spreizung und mit welchem mittleren R-Wert das Netz ursprünglich ausgelegt wurde. Oft wurden die Rohrnetze gar nicht ausgelegt.

Lösung: Abschätzung der Druckverluste

Die Rohrnetzkonstante C für Gesamtnetze (mit ähnlicher Ausdehnung) ist etwa gleich geblieben.


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

77

Optimierung von Bestandsanlagen

Überblick über die überschlägige Rohrnetzberechnung

Welche Sondereinbauten gibt es üblicherweise?

- Wärmemengenzähler
 - Flügelrad
 - Ultraschall

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

Optimierung von Bestandsanlagen

Welche Sondereinbauten gibt es üblicherweise?

Schmutzfänger

Rotguss-Schmutzfänger mit Schweißtüllen DN 15 bis 32

Luftabscheider/-sammler

Flamcovent Absorptions-Luftabscheider

Schwerkraftbremsen

Sperrventil "Flowstop" DN 25, 32

Welche Sondereinbauten gibt es üblicherweise?

 Rückschlagklappen und -ventile

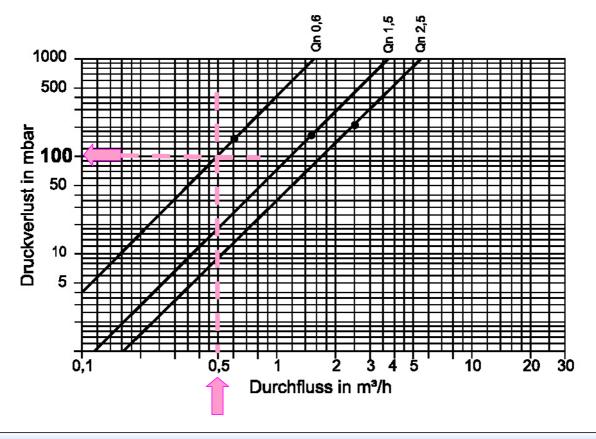
Disco-Rückschlagklappe direkt an Pumpenstutzen

Platten-Wärmeübertrager

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

81

Optimierung von Bestandsanlagen



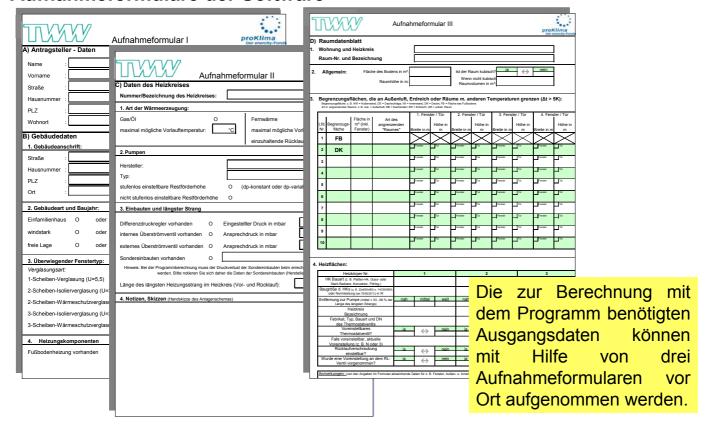
Warum müssen die Sondereinbauten bei der Durchführung des hydraulischen Abgleichs berücksichtigt werden?

- Sondereinbauten, die sich im zu betrachtenden System befinden, weisen einen zum Teil erheblichen Druckverlust auf
- Der von den Sondereinbauten verursachte Druckverlust hängt vom Volumenstrom im System ab
- Um die benötigte Förderhöhe bzw. Restförderhöhe korrekt bestimmen zu können, muss der Druckverlust dieser Bauteile in Abhängigkeit vom Volumenstrom aus Diagrammen abgelesen werden
- Druckverlust der Sondereinbauten muss von der Pumpe zusätzlich zu den üblichen Druckverlusten aufgebracht werden!

Abhängigkeit von Volumenstrom und Druckverlust: Bsp. WMZ

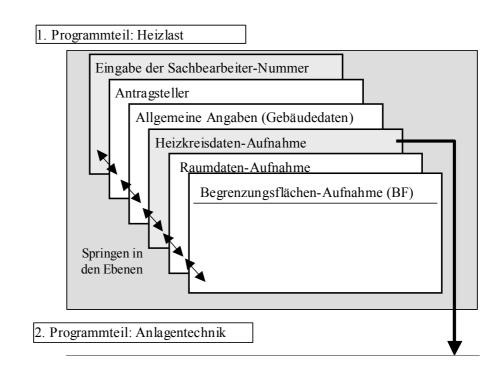
Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

83


Optimierung von Bestandsanlagen

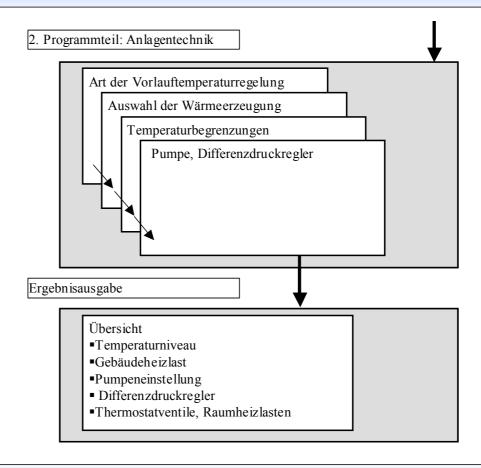
Programm und Aufnahmeformulare

Aufnahmeformulare der Software


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

85

Optimierung von Bestandsanlagen

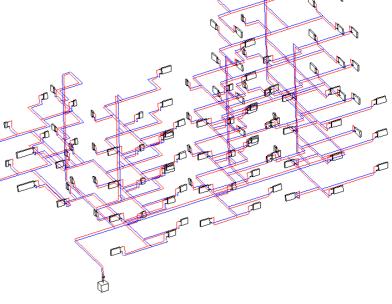

Programmablauf

Optimierung von Bestandsanlagen

Programmablauf

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

87


Optimierung von Bestandsanlagen

Beispiel

Untersuchtes Mehrfamilienhaus

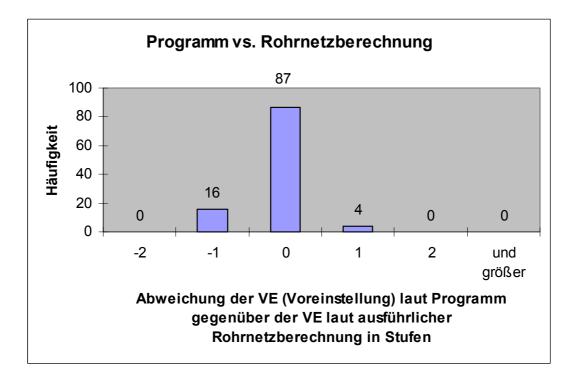
Beispiel: Programmausdruck

Ergebnis der optimierten Hydraulik	Programm-Version 3.4						
Sachbearbeiter	Antragsteller						
Nummer : 2	Name : Wohnungsbaugesellschaft XYZ						
Name : Mustermann, Max							
Straße : Musterstr. 1	Gebäude						
PLZ, Ort : 38302 Musterstadt	Straße : Beispielstr. 33						
Telefon : 0800 2266	PLZ, Ort : 30000 Beispielstadt						
Telefax : 0800 2267	Strang : Heizkreis gesamtes Gebäude						
1.) Berechnete Gebäudeheizlast	2.) Optimiertes Temperaturniveau des Gesamtsystems						
Gebäudekenndaten:	Temperaturen für den Auslegungsfall:						
Baualtersklasse : 8) 01/1995 bis heute							
Grundfläche : 1212 m²	Vorlauftemperatur : 69 °C> Am Regler eingestellte Heizkurve:						
Heizlast : 49 kW	Rücklauftemperatur : 41 °C Steilheit:						
spez. Heizlast : 41 W/m²	Parallelverschiebung:						
3.) Optimierte Pumpeneinstellung	4.) Differenzdruckregler						
Pumpendaten:	Hinweis / einzustellende Reglerwerte:						
Pumpentyp : Stufenlos einstellbare Restförderhöhe							
Pumpenstufe : -	Der Einsatz eines Strang-Differenzdruckreglers ist nicht erforderlich.						
Restförderhöhe : 80 mbar (entspricht 0,80 m)							
Volumenstrom : 1491 l/h							
5.) Sonstiges Δp(sonder): 0 mbar Ansprechwert ext. Ü-Ventil:	0 mbar Längster Strang: 120,0 m Kennw. HK-Dim.: 19% 2,4						

Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel

89

Optimierung von Bestandsanlagen



Beispiel: Programmausdruck

6.)	Einstellwerte	der Th	ermos	tatventile								
	Raumda	iten		Heizkörper	date	n					THKVs - Ermittlung der	Voreinstellwerte
lfd. Nr.	Raumbezeichnung	beheizte Fläche m²	Raum- Heizlast W	Heizkörpertyp	t _R °C	Norm- Leistung 75/65°C	Ver- hältnis Q _{HK} /Q _R	k _V - Wert m³/h	Δp mbar	Durch- fluss I/h	Gewähltes Ventil: Hersteller, Typ, DN	Gewählte Voreinstellung, Bemerkungen
1	Kind W1 EG	15,7	800	Profil-Flach-HK 11/500/1200	57	970	1,2	0,27	48	58		
2	Wohnzimmer W1 EG	20,1	841	Profil-Flach-HK 22/500/1200	34	1753	2,1	0,09	48	21		Spreizung > 30 K!
3	Bad W1 EG	5,5	244	Profil-Flach-HK 22/900/500	27	1178	4,3	0,02	48	5		Spreizung > 30 K!
4	Küche W1 EG	12,2	378	Profil-Flach-HK 11/500/1200	29	970	2,6	0,04	48	8		Spreizung > 30 K!
5	Schlafen W1 EG	14,0	740	Profil-Flach-HK 11/500/1200	53	970	1,3	0,18	48	39		
6	Flur W2 EG	6,7	170	Profil-Flach-HK 11/500/400	30	323	2,2	0,02	48	4		kv-Wert zu klein! Spreizung > 30 K!
7	Wohnen W2 EG	23,0	638	Profil-Flach-HK 11/500/1200	45	970	1,5	0,11	48	23		
8	Wohnen W2 EG	23,0	638	Profil-Flach-HK 11/500/1200	45	970	1,5	0,11	48	23		
9	Schlafen (Kind) W2 EG	14,0	552	Profil-Flach-HK 11/500/1200	39	970	1,8	0,07	48	16		
10	Schlafzimmer W2 EG	16,0	522	Profil-Flach-HK 11/500/1200	38	970	1,9	0,06	48	14		Spreizung > 30 K!
11	Bad W2 EG	8,1	435	Profil-Flach-HK 11/900/700	39	942	1,9	0,06	48	13		
12	Schlafen W3 EG	14,5	511	Profil-Flach-HK 11/500/1200	37	970	1,9	0,06	48	14		Spreizung > 30 K!
13	Kind W3 EG	12,5	450	Profil-Flach-HK 11/500/1000	39	808	1,8	0,06	48	13		Spreizung > 30 K!
14	Wohnen W3 EG	23,3	467	Profil-Flach-HK 11/500/1200	34	970	2,1	0,05	48	11		Spreizung > 30 K!
15	Wohnen W3 EG	23,3	467	Profil-Flach-HK 11/500/1200	34	970	2,1	0,05	48	11		Spreizung > 30 K!

Vergleich Programm mit ausführlicher Rohrnetzberechnung

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

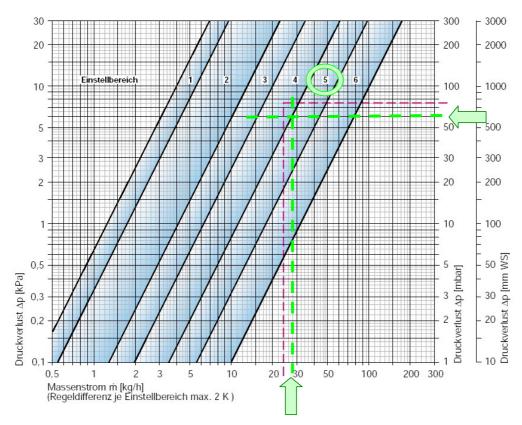
Q.

Optimierung von Bestandsanlagen

Umsetzung in der Praxis

Dokumentation der durchgeführten Arbeiten

- Kurze Beschreibung der durchgeführten Tätigkeiten
- Dokumentation von Ein- und Ausbau von Komponenten
 - -Grund für Ein- bzw. Ausbau
 - -Hersteller, Typ, Größe
- Einstellparameter alt/neu für:
 - Heizkurve (Steilheit, Parallelverschiebung)
 - Pumpe
 - · Eingestellte Stufe bzw. Förderhöhe
 - Regelungsart (dp-const/dp-var,dp-const/var)
 - Thermostatventile
 - Vorgenommene Voreinstellung bzw. gewählter k_V-Kegel
 - Einstellung der Rücklaufverschraubung des HK
 - Einstellung evt. vorhandener Differenzdruckregler, Strangregulierventile, Überströmventile


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

93

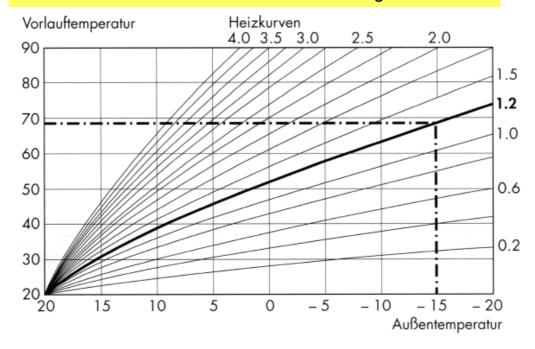
Optimierung von Bestandsanlagen

Wahl von Thermostatventilen gemäß Programmausdruck

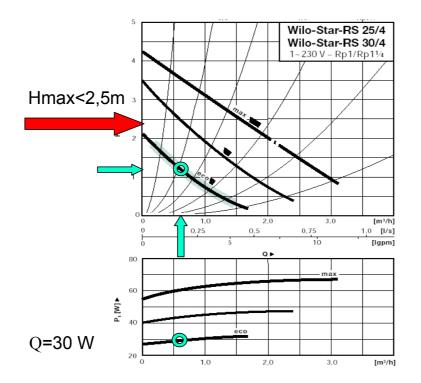
Wahl von Thermostatventilen anhand einer Liste

					(nach DII	gigkeit v	ert in m on der \ bei 2 K F	√oreinst	_		
Hersteller	Тур	DN	1	2	3	4	5	6	7	8	N
Heimeier	F-exakt	10	0,017	0,041	0,063	0,111	0,177	0,316	-	-	-
Danfoss	RA-UN	10	0,02	0,06	0,11	0,17	0,23	0,30	0,35	-	0,48
Honeywell / MNG	FV	10	0,02	0,04	0,11	0,19	0,25	0,29	0,32	0,35	-
Oventrop	F	10	0,025	0,051	0,095	0,152	0,228	0,323	-	-	-
Danfoss	RA-UR	10	0,03	0,03	0,06	0,11	0,18	0,24	0,31	-	0,47
Danfoss	RA-N	10	0,04	0,09	0,16	0,25	0,32	0,38	0,42	-	0,56
Honeywell / MNG	V	10	0,04	0,08	0,20	0,29	0,33	0,35	0,38	0,41	-
Heimeier	V-exakt	10	0,047	0,098	0,161	0,234	0,364	0,468	-	-	-
Oventrop	AV 6, RFV 6, ADV 6	10	0,055	0,170	0,313	0,446	0,56	0,65	ı	ı	ı
Heimeier	F-exakt	15	0,017	0,041	0,063	0,111	0,177	0,316	-	-	-
Danfoss	RA-UN	15	0,02	0,06	0,11	0,17	0,23	0,30	0,35	-	0,48
Honeywell / MNG	FV	15	0,02	0,04	0,11	0,19	0,25	0,29	0,32	0,35	-
Oventrop	F	15	0,025	0,051	0,095	0,152	0,228	0,323	-	-	-
Danfoss	RA-UR	15	0,03	0,03	0,06	0,11	0,18	0,24	0,31	-	0,47
Danfoss	RA-N	15	0,04	0,09	0,16	0,25	0,36	0,43	0,52	-	0,73
Honeywell / MNG	V	15	0,04	0,08	0,20	0,29	0,33	0,35	0,38	0,41	-
Heimeier	V-exakt	15	0,047	0,098	0,161	0,234	0,364	0,468	-	-	-
Oventrop	AV 6, RFV 6, ADV 6	15	0,055	0,170	0,313	0,446	0,56	0,65	-	-	-

Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel


95

Optimierung von Bestandsanlagen

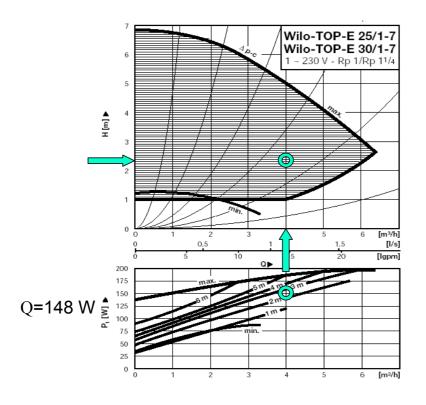

Einstellung der Regelung

Heizkurve - Steilheit und Parallelverschiebung

Einstellung oder Neuwahl der Pumpe (ungeregelt)

Beispiel:

EFH V=0,6m³/h H=1,2m


Prof. Dr. D. Wolff - Fachhochschule Braunschweig / Wolfenbüttel

97

Optimierung von Bestandsanlagen

Einstellung oder Neuwahl der Pumpe (geregelt)

Beispiel:

MFH $V=4,0m^3/h$ H=2,2m

Wahl von Thermostatventilen anhand einer Empfehlung

		Förderhöhe (V			
infamilienhä		T .	I de la constalla de fe	Li data a constante de la cons	-
Volumenstrom	Einzustellende Förderhöhe	Тур	eingestellte Stufe	Leistungsaufnahme im Mittel	Pre (UV
	0,50 m	Star-RS 25/2	1	17 W	106
0.003/h	0,65 m	Star-RS 25/2	1	17 W	106
0,20 m³/h	0,80 m	Star-RS 25/2	1	17 W	106
	0,95 m	Star-RS 25/2	1	17 W	106
	0,70 m	Star-RS 25/2	1	19 W	106
0.40 m³/h	0,85 m	Star-RS 25/4	1	27 W	108
0,40 111 /11	1,00 m	Star-RS 25/4	1	27 W	108
	1,15 m	Star-RS 25/4	1	27 W	108
	1,20 m	Star-RS 25/4	1	28 W	108
0,60 m³/h	1,35 m	Star-E 25/1-3	-	34 W	149
0,00 111 711	1,50 m	Star-E 25/1-3	-	36 W	149
	1,65 m	Star-E 25/1-3	-	37 W	149
	1,50 m	Star-E 25/1-3	-	38 W	149
0,80 m³/h	1,65 m	Star-E 25/1-3	-	39 W	149
0,00	1,80 m	Star-E 25/1-3	-	41 W	149
	1,95 m	Star-E 25/1-3	-	42 W	149
	1,90 m	Star-E 25/1-3	-	43 W	149
1.00 m³/h	2,05 m	Star-E 25/1-3	-	43 W	149
.,	2,20 m	Star-E 25/1-3	-	44 W	149
	2,35 m	Star-E 25/1-3	-	44 W	149
	äuser Einzustellende Förderhöhe	Тур	eingestellte Stufe	Leistungsaufnahme im Mittel	
Mehrfamilienh Volumenstrom	Einzustellende Förderhöhe	**	eingestellte Stufe		(UV
Volumenstrom	Einzustellende	Typ Star-E 25/1-3 Star-E 25/1-3	eingestellte Stufe	im Mittel	(UV
	Einzustellende Förderhöhe 0,70 m	Star-E 25/1-3	-	im Mittel 33,8 W	(UV 149
Volumenstrom	Einzustellende Förderhöhe 0,70 m 1,00 m	Star-E 25/1-3 Star-E 25/1-3	- -	im Mittel 33,8 W 35,8 W	(UV 149 149 149
Volumenstrom	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3	- - -	im Mittel 33,8 W 35,8 W 37,8 W	149 149 149 149
Volumenstrom 1,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3	- - - -	im Mittel 33,8 W 35,8 W 37,8 W 40,8 W	149 149 149 149 17
Volumenstrom	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5		im Mittel 33,8 W 35,8 W 37,8 W 40,8 W 51,3 W	149 149 149 149 17
Volumenstrom 1,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 1,80 m 2,00 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5		im Mittel 33,8 W 35,8 W 37,8 W 40,8 W 51,3 W 53,3 W	149 149 149 149 17 17
Volumenstrom 1,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 1,80 m 2,00 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5		im Mittel 33,8 W 35,8 W 37,8 W 40,8 W 51,3 W 53,3 W	149 149 149 149 17 17 17
1,00 m³/h 2,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 1,80 m 2,00 m 2,20 m 2,40 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5	-	im Mittel 33,8 W 35,8 W 37,8 W 40,8 W 51,3 W 51,3 W 54,3 W 66,8 W 71,2 W	149 149 149 170 170 170 170 170
Volumenstrom 1,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 2,00 m 2,20 m 2,40 m 1,80 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5		im Mittel 33,8 W 35,8 W 40,8 W 40,8 W 51,3 W 53,3 W 64,3 W 66,8 W 71,2 W 72,4 W	(UV 149 149 149 17 17 17 17 17
1,00 m³/h 2,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 2,00 m 2,20 m 2,40 m 1,80 m 2,00 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5		im Mittel 33,8 W 35,8 W 37,8 W 40,8 W 51,3 W 51,3 W 54,3 W 66,8 W 71,2 W	(UV 149 149 149 17 17 17 17 17 17
1,00 m³/h 2,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 1,80 m 2,00 m 2,20 m 2,40 m 1,80 m 2,20 m 2,20 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5		im Mittel 33,8 W 35,8 W 40,8 W 51,3 W 51,3 W 53,3 W 66,3 W 66,8 W 71,2 W 72,4 W 61,4 W 63,0 W	(UV 149 149 149 17 17 17 17 17 17 17 17 17
1,00 m ³ /h 2,00 m ³ /h 3,00 m ³ /h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 2,00 m 2,20 m 2,40 m 1,80 m 2,00 m 2,20 m 2,40 m 2,00	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-7 Top-E 25/1-7 Top-E 25/1-7		im Mittel 33,8 W 35,8 W 37,8 W 40,8 W 51,3 W 53,3 W 54,3 W 56,3 W 66,8 W 71,2 W 71,2 W 61,4 W	Pre (UV 149 149 149 149 177 177 177 177 177 177 177 177 177 17
1,00 m³/h 2,00 m³/h	Einzustellende Förderhöhe 0,70 m 1,00 m 1,30 m 1,60 m 2,00 m 2,20 m 2,40 m 1,80 m 2,00 m 2,20 m 2,20 m 2,40 m	Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-3 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Star-E 25/1-5 Top-E 25/1-7 Top-E 25/1-7		im Mittel 33,8 W 35,8 W 40,8 W 51,3 W 51,3 W 53,3 W 66,3 W 66,8 W 71,2 W 72,4 W 61,4 W 63,0 W	(UV 149 149 149 17 17 17 17 17 17 17 528 528

Prof. Dr. D. Wolff – Fachhochschule Braunschweig / Wolfenbüttel