Praktische Gebäudeanalyse im Bestand und Neubau

Dipl.-Ing. (FH) Kati Jagnow Prof. Dr.-Ing. Dieter Wolff Dipl.-Ing. Arch. Stefan Horschler

Das nachfolgende Dokument ist ein leicht geänderter Auszug des folgenden Buches:

Die neue Energieeinsparverordnung 2002

Kosten- und verbrauchsoptimierte Gesamtlösungen

Verordnungstext, Zugehörige Normen, Effizienz in der Umsetzung

Köln: Dt. Wirtschaftsdienst 2002 ca. 350 Seiten ca. 80,- DM / 40,- Euro ISBN 3-87156-499-0

Erscheint I. Quartal 2002

Wenn voraussichtlich zum 1.2.2002 die neue Energieeinsparverordnung (EnEV) in Kraft tritt, gelten neue, verschärfte Anforderungen für die energetische Qualität von Gebäuden. So wird bei allen Neubauten der so- genannte Niedrigenergiestandard eingeführt, der eine Reduzierung des Energieverbrauchs um durchschnittlich 30 % gewährleisten soll.

Die Autoren des Buches liefern nicht nur die notwendigen Erläuterungen, wie die Anforderungen der EnEV mit ihren optimistischen Randbedingungen per Rechenverfahren theoretisch einzuhalten sind – womit die geforderte "Energieeinsparung" formal-rechtlich erfüllt wäre. Viel wichtiger noch: Sie bieten praxiserprobtes fundiertes Wissen über Energieverbrauch und Energieverbraucher eines Gebäudes, das aus lebendigen Projekten gewonnen wurde und mit dessen Hilfe wirkliche, kostensenkende Energieeinsparung realisiert werden kann. Denn wer die Verordnung nicht bis zur Grenze des Zulässigen ausreizt, sondern in das technisch und wirtschaftlich Machbare investiert, wird bei entsprechender Qualitätssicherung den echten Niedrigenergiestandard schaffen.

Aus dem Inhalt:

Einflüsse auf den Energiebedarf eines Gebäudes

Integrierte Planung von Gebäude und Anlagentechnik

Verordnungstext der EnEV 2002 mit Kommentierung

Energetische Analyse von Neubau und Bestand im Wohn- und Nichtwohnbau

Inhalt und praktische Anwendung der EnEV und ihrer begleitenden Normen im Nachweisverfahren anhand von Beispielen

Wirtschaftlichkeitsbetrachtungen bei der Planung und Umsetzung von Energieeinsparmaßnahmen

Prof. Dr.-Ing. D. Wolff

Professor für Heizungs- und Regelungstechnik an der Fachhochschule Braunschweig / Wolfenbüttel

Dipl.-Ing. (FH) K. Jagnow

Trainings- & Weiterbildungszentrum Wolfenbüttel e.V.; Energieberatung

Dipl.-Ing. Arch. S. Horschler

Büros für Bauphysik in Hannover; Qualitätssicherung am Bau

1.1. Allgemeine Beschreibung des Gesamtbilanzverfahrens

1.1.1. Grundidee für die energetische Bewertung

Das Gesamtbilanzverfahren ist eine Energiebilanz für den näherungsweise stationären Zustand eines Gebäudes. Für einen definierten Zeitraum werden die Energiegewinne und –verluste der Anlagentechnik und des Gebäudes anhand von Kennwerten und unter Voraussetzung einer bestimmten Nutzung ermittelt.

Die im Verfahren angegeben Kennwerte sind über die Bilanzzeit – hier ein Jahr – gemittelte Werte. Kennwerte für andere Betrachtungszeiträume können jedoch unter Verwendung der angegebenen Formeln oder mit Hilfe anderer Energiebilanzverfahren bestimmt werden.

Das Verfahren ermöglicht die Berechnung der über den Zeitraum eines Jahres zur Warmwasserbereitung und Raumheizung (Heizung inkl. Lüftung) benötigten Primärenergiemengen und der unmittelbar mit der Wärmeenergieversorgung in Verbindung zu bringenden primärenergetisch bewerteten Hilfsenergiemenge der Fördereinrichtungen (Pumpen, Ventilatoren etc.). In einem Zwischenschritt werden auch die Jahresendenergien für die Heizung, Lüftung und Trinkwarmwasserbereitung ausgewiesen.

Die Anwendung des Verfahrens an einem Beispiel, sowie Übersichten für tabellierte Kennwerte und die eigentlichen Berechnungsformeln folgen im Anschluss an die allgemeine Beschreibung im nächsten Unterkapitel.

Als wesentlicher Unterschied zu vielen anderen Berechnungsverfahren ist die durchgehende Betrachtungsweise bei der Bewertung von Gebäude, Anlage und Nutzer zu nennen. Damit werden Abgrenzungsprobleme, wie sie für die DIN V 4108 Teil 6 und die DIN V 4701 Teil 10 auftreten, vermieden und physikalische Zusammenhänge realitätsnäher abgebildet.

Die in der beheizten, wärmegedämmten Gebäudehülle ungeregelt anfallenden Energien (solare Energiegewinne, innere Wärmegewinne durch Personen und Geräte, aber auch die Anlagentechnik) werden gemeinschaftlich betrachtet und bewertet. Eine teilweise zeitlich und räumlich eingeschränkte Nutzung der Anlagentechnik (Heizung, Lüftung, Trinkwarmwasserbereitung) kann ebenfalls berücksichtigt werden.

Der durch die Lüftung des Gebäudes auftretende Lüftungswärmeverlust muss nicht auf die Bereiche "Gebäude", "Nutzer" und "Anlage" aufgeteilt werden, sondern wird als Gesamtgröße bewertet.

Die im folgenden beschriebene Vorgehensweise bezieht sich allgemein auf ein Gebäude mit im Mittel homogener Bauphysik, Anlagentechnik und Nutzung. Weist das Gebäude keine gleichförmigen Eigenschaften auf, so ist es ggf. in Teilgebäude zu zerlegen. Da dies in der Regel zu einem übermäßigen Aufwand führt, ist eine Zerlegung genau abzuwägen. Für die meisten Gebäude können ungleichmäßige Eigenschaften gemittelt werden.

1.1.2. Struktur des Gesamtbilanzverfahrens

Zunächst wird das Gebäude einem Nutzungstyp (zum Beispiel Verwaltungsgebäude) und einer Baualtersklasse (zum Beispiel errichtet nach Wärmeschutzverordnung von 1995) zugeordnet. Diese allgemeinen Gebäudeeigenschaften helfen bei der Bildung von Energiekennwerten, wenn keine realen Daten vorliegen.

In nächsten Schritt wird für das Gebäude zunächst die Heizgrenztemperatur abgeschätzt, unterhalb der das Gebäude beheizt werden muss. Damit liegen die Länge der Heizperiode und die mittlere Außentemperatur in der Heizperiode fest. Dies sind fundamentale Größen, die die Höhe aller Energiekennwerte entscheidend bestimmen, da das gesamte Bilanzverfahren mit diesen Werten durchgeführt wird.

Aus der mittleren Sollinnentemperatur für die beheizte Zone des Gebäudes kann unter Berücksichtigung der Art der Temperaturregelung (teilweise zeitlich eingeschränkter Heizbetrieb, Art der Regelung der Wärmeübergabe an den Raum) und der Eigenschaften des Gebäudes (Wärmespeicherkapazität, Auskühlverhalten) eine mittlere Innentemperatur bestimmt werden. Im Gegensatz zu den Verfahren nach DIN V 4108 Teil 6 und DIN V 4701 Teil 10 wird kein gesonderter Wärmeverlust der Wärmeüber-

gabe ausgewiesen. Das physikalische Phänomen wird vereinfacht als eine erhöhte Raumtemperatur ausgedrückt.

Für das Gebäude wird die spezifische Transmissionsheizlast H_T aufgrund der Güte der Gebäudehülle (mittlerer U-Wert und Wärmebrücken) bestimmt. Anhand der Nutzung, der Anlagentechnik und der Restundichtigkeiten der Gebäudehülle kann der mittlere Luftwechsel und damit die spezifische Lüftungsheizlast H_V berechnet werden. Mit den mittleren Innen- und Außentemperaturen sowie der Länge der Heizperiode ergeben sich die Wärmeverluste der Transmission und Lüftung.

Zum Fremdwärmeanfall zählen im Rahmen des Gesamtbilanzverfahrens die Energien der solaren Einstrahlung sowie die gesamte, ungeregelt innerhalb der gedämmten Gebäudehülle auftretenden Wärmeabgabe von Personen, Geräten, Leuchten und den Komponenten der Anlagentechnik.

Nicht der gesamte so bilanzierte Fremdwärmeanfall kann auch zu Heizzwecken, das heißt zur Dekkung von Transmissions- und Lüftungswärmeverlusten, genutzt werden. Der nutzbare Anteil – der Wärmegewinn – hängt von einem Nutzungsgrad für Fremdwärme ab. Anhand des Verhältnisses von Fremdwärmeanfall zu Wärmeverlusten sowie der Art der Raumtemperaturregelung wird dieser Nutzungsgrad bestimmt.

Der für das Gebäude notwendige Restanteil geregelter Wärmeabgabe der Raumheizung (als gebäude-, anlagen- und nutzungsabhängige Eigenschaft) kann aus der Differenz der Wärmeverluste (Transmission und Lüftung) und der Wärmegewinne (solare und innere) ermittelt werden. Diese Wärmemenge wird als "Nutzwärme der Heizung und Lüftung" (vergleichbar mit dem bisher üblichen Begriff des Heizwärmebedarfs) bezeichnet.

Neben der Nutzwärmemenge werden nun die anlagentechnischen Verluste der Heizungs- und Lüftungsanlage bestimmt. Anhand von mittleren Heizwasser- bzw. Lufttemperaturen der Versorgungsleitungen und Speicher, mittleren Umgebungstemperaturen, verlegten Leitungslängen und Speichergrößen, Dämmstandards der Anlagenkomponenten sowie der Art der Regelung und Nutzung wird die Energiemenge bestimmt, die im Verlaufe einer Heizperiode von Verteilleitungen und Speichern abgegeben wird. Der Anteil, der davon in der beheizten Hülle anfällt, wird gesondert ausgewiesen, er zählt zum Fremdwärmeanfall und kann teilweise zur Heizung genutzt werden.

Für die Trinkwarmwasserbereitung wird das bisher gezeigte Schema analog angewendet. Anhand der Nutzung des Gebäudes wird zunächst der Trinkwarmwasserbedarf ermittelt. Er wird als Nutzenergie der Trinkwarmwasserbereitung verstanden. Analog zu den bereits für die Heizung und Lüftungsanlage genannten Kenngrößen werden die jährlichen Wärmeverluste der Wärmeverteilung und Wärmespeicherung für das Trinkwarmwassernetz bestimmt. Der in der beheizten Hülle auftretende Wärmeverlust wird gesondert ausgewiesen. Er kann, da auch er zum Fremdwärmeanfall zählt, teilweise zur Raumheizung verwendet werden.

Zusammen mit dem bereits berechneten Wärmenutzen für Heizung, Lüftung und Trinkwasserbreitung bestimmen die Wärmeverluste aller Wärmeverteilleitungen und aller Wärmespeicher die Energiemenge, die durch den (oder die) Wärmeerzeuger im Verlauf eines Jahres bereitgestellt werden muss. Die Betrachtung erfolgt an dieser Stelle weiterhin getrennt für die Heizung und Lüftung auf der einen Seite und die Trinkwarmwasserbereitung auf der anderen Seite, auch wenn ggf. zur Heizung und Trinkwarmwasserbereitung ein und derselbe Wärmeerzeuger verwendet wird.

Für jeden Wärmeerzeuger der Heizung und Lüftung (Kessel, Luftheizregister, Wärmerückgewinnung...) wird ein Deckungsanteil bestimmt. Dieser spiegelt den Anteil wieder, den der jeweilige Erzeuger zur gesamten benötigten Energieabgabe der Heizung und Lüftung beiträgt. Anschließend wird für jeden Erzeuger eine Erzeugeraufwandszahl ermittelt. Diese berücksichtigt – als Multiplikator für die abzugebene Energie des Erzeugers – die zusätzlichen Energieverluste, die bei der Wärmeerzeugung im Betrieb und in Stillstandszeiten auftreten. Eine getrennte Betrachtung der Wärmeerzeugerverluste in Betriebs- und Bereitschaftsverluste ist möglich für brennstoffbefeuerte Kessel. Die Wärmerückgewinnung einer Lüftungsanlage wird wie ein Wärmeerzeuger behandelt, der keine Energie benötigt.

Die Wärmeverluste der Erzeugung der Wärme für die Trinkwarmwasserbereitung werden bestimmt, je nach Art und Anzahl der Wärmeerzeuger. Für jeden Wärmeerzeuger der Trinkwarmwasserbereitung (Solaranlage, Wärmepumpe, Elektroheizstab, ...) werden dabei ein Deckungsanteil und eine Erzeugeraufwandszahl – in Analogie zu den Definitionen der Heizung und Lüftung – ermittelt.

Aus allen Einzelenergiekennwerten für Nutz- und Verlustenergien, Deckungsanteilen und Erzeugeraufwandszahlen wird der Endenergiebedarf des Gebäudes bestimmt. Dies ist die Energiemenge, die zur Aufrechterhaltung der geforderten Raumbedingungen (Temperatur und Luftwechsel) und zur Bereitstellung der benötigten Warmwassermenge theoretisch in Form eines Energieträgers (Gas, Öl, Fernwärme) in das Gebäude fließen muss. Dabei sind jedoch bisher nur die thermischen Energien berücksichtigt.

Anschließend werden, als Vorarbeit für die Primärenergiebilanz, zusätzlich auch alle Hilfsenergien berücksichtigt, die auf dem Weg von der Wärmeerzeugung bis zur Übergabe der Nutzenergie an den Raum oder den Nutzer anfallen. Der Hilfsenergiebedarf wird mit Hilfe von jährlichen mittleren elektrischen Leistungen und jährlichen Laufzeiten bestimmt.

Mit Hilfe von primärenergetischen Umrechnungsfaktoren für die einzelnen Energieträger wird schließlich der Primärenergiebedarf bestimmt. Das Ablaufschema für die Bilanz zeigt das Flussdiagramm in Bild 1.

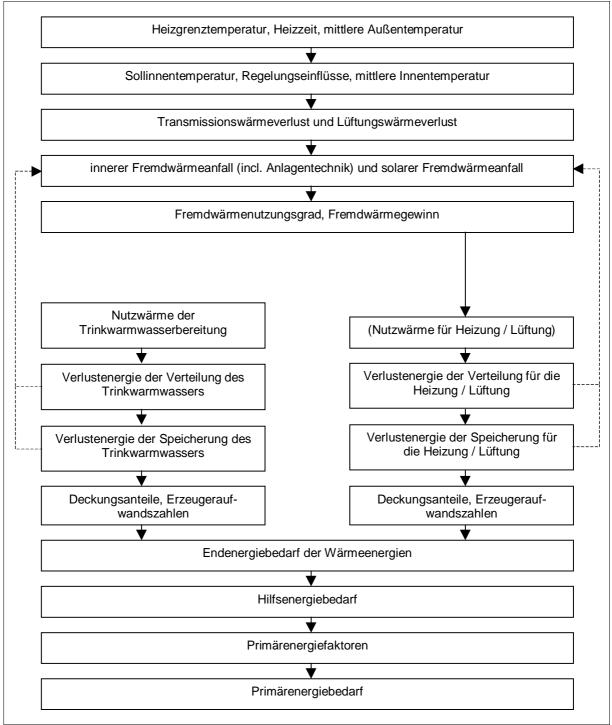


BILD 1 FLUSSDIAGRAMM FÜR DEN ABLAUF DES GESAMTBILANZVERFAHRENS.

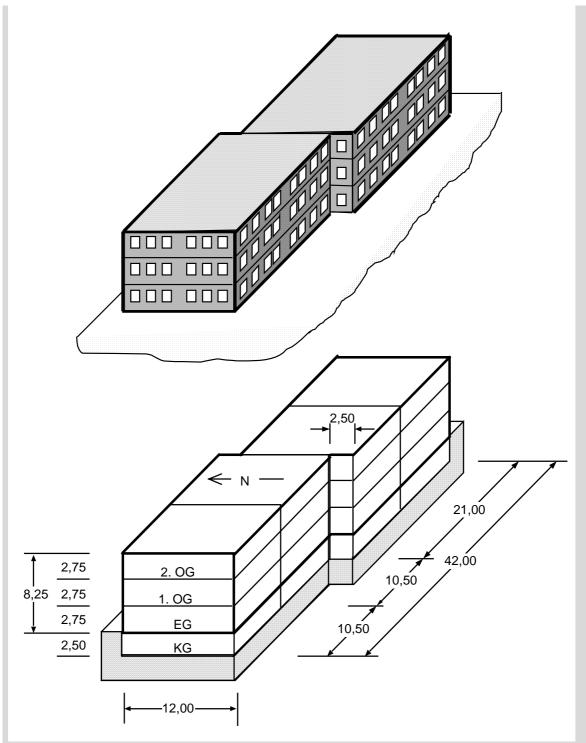
1.2. Datengrundlage für eine Gebäudeanalyse

Vor Beginn der energetischen Bilanzierung eines Gebäudes – Verbrauchsanalyse eines bestehenden Gebäudes oder Bedarfsprognose für den Neubau – muss eine Anzahl von Randdaten bekannt sein. Eine Zusammenstellung liefert die folgende Übersicht:

Nutzungstyp, Baualtersklasse des Gebäudes
Größe der beheizten Wohn- oder Nutzfläche
Kompaktheitsgrad des Gebäudes oder Größe der Hüllfläche
Fensterflächenanteil und Ausrichtung der Fenster
Wärmedurchgangswerte der Hüllfläche
Innentemperatur und Luftwechsel
Grundstruktur der Regelung (Absenkung der Heizung, Wärmeübergabe im Raum)
Länge der wärmeführenden Leitungen, ihre Lage im Gebäude (innerhalb oder außerhalb der wärmegedämmten Hülle), ihr Dämmstandard
Größe eventuell vorhandener Wasserspeicher, ihr Aufstellort im Gebäude, ihr Dämmstandard und
ihre mittlere Temperatur,
Art und Größe des Wärmeerzeugers oder der Wärmeerzeuger
bei der Untersuchung von Gebäuden anhand von Verbrauchswerten: Klimadaten für den Abrech-
nungszeitraum

Weitere Hinweise und Erklärungen der genannten Positionen werden sich dem Leser immer dann bieten, wenn auf die Ermittlung der Energieeinzelkennwerte eingegangen wird.

1.2.1. Beispielgebäude


Die Anwendung des gesamtenergetischen Bilanzverfahrens soll anhand eines konkreten Beispielgebäudes demonstriert werden. Im folgenden wird die Beispielrechnung in den bereits bekannten grau hinterlegten Textkästen wiedergegeben sein.

BEISPIEL MFH:

Das Gebäude ist ein Mehrfamilienhaus mit Standort in Wolfenbüttel. Es wurde 1974 errichtet. 1994 wurde der vorher installierte Konstanttemperaturkessel durch einen Niedertemperaturkessel ersetzt. Es wurden bis zum Jahr 2002 keine weiteren Sanierungsmaßnahmen durchgeführt.

Für das Gebäude soll zunächst eine Energiebedarfsrechnung durchgeführt werden. Diese setzt voraus, dass keine Abrechnungsdaten für Energie bekannt sind. Die benötigten wichtigen Kenndaten für das Gebäude werden so verwendet, wie sie bei einer Ortsbesichtigung gesichtet wurden. Diese Größen werden immer dann genannt, wenn sie in der Energiebilanz bedeutend sind.

Das Gebäude ist in Bild 2 dargestellt.

BILD 2 MEHRFAMILIENHAUS

In diesem Gebäude gibt es 12 Wohneinheiten mit einer Größe von je 91,5 m². Diese werden im Schnitt von je 3 Personen bewohnt.

Für das Jahr 2000 ist der Jahresgasverbrauch für Heizung und Warmwasserbereitung bekannt. Der Energieverbrauch soll für ein Standardjahr witterungsbereinigt werden. Weiterhin sollen verschiedene Modernisierungsvorschläge energetisch bewertet werden.

1.3. Anwendung des Gesamtbilanzverfahrens

Nacheinander wird im folgenden die Bestimmung der Energieeinzelkennwerte beschrieben und das Verfahren für das Beispielgebäude angewendet. Sind alle Einzelkennwerte bekannt, werden die Jahresendenergiebilanz und die Jahresprimärenergiebilanz erstellt.

1.3.1. Allgemeine Daten bei der Analyse von Gebäuden

1.3.1.1. Nutzungstypen und Baualtersklassen

Tabelle 1 erlaubt die Zuordnung des zu untersuchenden Gebäudes zu einem Gebäudenutzungstyp. Die angegeben Anteile der Nutzungstage pro Jahr und Nutzungsstunden pro Tag stellen einen Mittelwert dar. Sie sollten bei Kenntnis genauerer realer Gegebenheiten ersetzt werden.

Gebäudenut- zungstypen	Beispiele	Anteil Nutzungstage pro Jahr, in [d/a]	Anteil Nutzungs- stunden pro Nut- zungstag, in [h/d]
Krankenhäuser	Krankenhäuser, Altersheime	365	24
EFH	Einfamilienhäuser, Reihenhäuser	365	15
MFH	Mehrfamilienwohnhäuser, Hotels, Heime, Kasernen, Strafanstalten	365	15
Bäder	Hallenbäder, Saunen	303	12
Verkauf	Verkaufsgebäude, Messen	277	12
Bühnen/ Säle	Theater, Kinos, Kirchen, Konzertsäle	260	14
Industrie	Gewerbebauten, Werkstätten, Fabrikgebäude	252	10
Lager	Lager	252	10
Verwaltung	Bürogebäude, Bibliotheken, Arztpraxen	252	10
Restaurants	Restaurants, Diskotheken	252	8
Sport	Turnhallen, Fitnesszentren	190	12
Schulen	Schulen, Kindergärten, Kongresszentren	190	10

TABELLE 1 ZUORDNUNG VON GEBÄUDEN ZU NUTZUNGSTYPEN

Mit der Baualtersklasse oder energetischen Klassen sind vor allem Dämmstandards der Gebäudehülle, die Speicherfähigkeit der inneren Gebäudemassen, die Gebäudeluftdichtheit und die Anzahl der jährlichen Heiztage verknüpft.

Da viele ältere Gebäude in den letzten Jahren teilsaniert wurden, ist eine eindeutige Zuordnung oft nur schwer möglich. Eine Zuordnung kann dann jedoch zum Beispiel anhand der spezifischen Heizleistung am kältesten Tag erfolgen. Wenn eine Komplettsanierung der Hülle erfolgt ist, kann auch das Jahr der Sanierung - mit dem zu diesem Zeitpunkt üblichen Dämmstandard – als Baualtersklasse verwendet werden. In allen anderen Fällen ist eine sinnvolle Abschätzung zu treffen.

Die in Tabelle 2 gegebene Abkürzungen für die Baualtersklassen bzw. energetischen Klassen werden in den nachfolgenden Kapiteln und Tabellen verwendet.

Baualtersklasse	Abkürzung	Heizlast am kältesten Tag, in [W/m²]
Gebäude mit Baujahren vor 1977	"vor 77"	130 > 200
Gebäude nach WSchV von 1977	"77-82"	70 130
Gebäude nach WSchV von 1982	"82-95"	60 100
Gebäude nach WSchV von 1995	"WSchV"	40 60
Gebäude nach EnEV 2002	"EnEV"	30 50
Niedrig-Energie-Häuser	"NEH"	25 40
Ultra-Niedrig-Energie-Häuser und 3-Liter-Häuser	"UNEH"	1530
Passiv-Häuser	"PH"	≈10

TABELLE 2 BAUALTERSKLASSEN

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [LEG], [Energiepass], [SIA 308/1], [Recknagel 2001] und eigene Untersuchungen und Erfahrungen der Autoren.

1.3.1.2. Bezugsfläche und Kompaktheit von Gebäuden

Bei der energetischen Beschreibung eines Gebäudes wird in der Regel auf flächenbezogenen Kennwerte zurückgegriffen – zum Beispiel bei der Angabe des spezifischen Heizenergieverbrauches in kWh/(m²a). So ist eine Vergleichbarkeit verschiedener Gebäude möglich. Ein speziell untersuchtes Gebäude lässt sich innerhalb seiner Nutzungsklasse oder Baualtersklasse energetisch einordnen.

Die Angabe spezifischer Kennwerte birgt nur eine Gefahr: den unterschiedlichen Flächenbezug. Innerhalb eines Gebäudes lassen sich eine Vielzahl von Flächen angeben, hier seien nur drei Beispiele genannt: die Bruttogeschossfläche A_{BGF} inklusive der nicht begehbaren Anteile der Wände, die beheizte Nutzfläche A_{N} , die pauschal aus dem äußeren Gebäudevolumen abgeleitet wird und auf die die EnEV 2002 bezug nimmt, oder auch die Energiebezugsfläche A_{EB} .

Die zuletzt genannte Fläche wird für alle folgenden Ausführungen dieses Kapitels die maßgebliche Bezugsfläche sein. Sie ist die Summe aller Wohn- bzw. Nutzflächen, für deren Nutzung eine Beheizung notwendig ist¹. Im Mittel untersuchter Gebäude ist die etwa 25...27% kleiner als die Nutzfläche A_N.

Tabelle 3 gibt einen Überblick über verschiedene Energiebezugsflächen je Person. Diese Größe kann hilfreich sein, wenn die Personenbelegung eines Gebäudes geschätzt werden muss.

Gebäudenutzungstyp	Energiebezugsfläche A _{EB} je Nutzer, in [m²/P]
Schulen	10
Sport, Bäder, Restaurants	20
Verwaltung, Krankenhäuser	30
MFH	35
EFH	45
Industrie, Verkauf	50
Bühnen/Säle	70
Lager	100

TÄBELLE 3 ENERGIEBEZUGSFLÄCHEN JE NACH GEBÄUDENUTZUNGSTYP

Einen entscheidenden Einfluss auf den Energiebedarf eines Gebäudes hat das Verhältnis der wärmeübertragenden Umfassungsfläche und des beheizten Volumens bzw. der beheizten Fläche. Es ist leicht einzusehen, dass in zwei Gebäuden gleicher Nutzfläche, dasjenige mit der sehr kompakten Bauweise sehr viel weniger Energieabgabepotential über die Außenflächen aufweist als das filigrane.

Der Kompaktheitsgrad kann sowohl über das Verhältnis der Hüllfläche zur Energiebezugsfläche A_H/A_{EB} als auch durch das Verhältnis der Hüllfläche zum äußeren Gebäudevolumen A_H/V_e angegeben werden. Dabei ist zu beachten, dass unter Hüllfläche die Fläche verstanden wird, die das wärmegedämmte Innere des Gebäudes umschließt. Analog verhält es sich mit dem äußeren Gebäudevolumen V_e . Ist der Keller eines Gebäudes zum Beispiel nicht gedämmt, so zählt er auch nicht zum wärmegedämmten Volumen.

Neben dem Kompaktheitsgrad eines Gebäudes bestimmt auch der Fensterflächenanteil (Fensterflächen in Rohbaumaßen) den Energieverbrauch des Gebäudes. Hohe Fensterflächenanteile ermöglichen in der Heizzeit einen großen Eintrag passiver Solarwärme, die den Heizenergiebedarf senkt.

Tabelle 4 gibt Richtwerte für den Kompaktheitsgrad und den Fensterflächenanteil. Für ein konkret zu untersuchendes Gebäude sollten diese Werte jedoch immer anhand der realen Gebäudegeometrie ermittelt werden, da hier von Gebäude zu Gebäude sehr große Unterschiede zu verzeichnen sind.

Praktische Gebäudeanalyse - Jagnow / Wolff / Horschler

¹ ist (beheizte Wohnfläche nach BGBl. I "Verordnung über wohnungswirtschaftliche Berechnungen 1990" (ohne Balkone und Wintergärten); beheizte Nutzfläche nach DIN 277 Teil 2 "Grundflächen und Rauminhalte im Hochbau; Gliederung der Nutzflächen, Funktionsflächen und Verkehrsflächen" [06.1987].

Gebäudenutzungstyp	Kompaktheitsgrad	A _H /Ve-Verhältnis,	Fensterflächenanteil
	A _H /A _{EB} , in [-]	in [m ⁻¹]	A _{Fe} /A _H , in [-]
EFH	2,12,8	0,61,0	0,050,30
Restaurant	1,62,0	0,40,8	k.A.
Verwaltung	1,62,0	0,40,8	0,10>0,50
MFH	1,41,9	0,30,7	0,050,20
Bühnen/Säle	1,31,8	0,30,6	k.A.
Schulen	1,31,8	0,30,6	k.A.
Bäder	1,01,5	0,30,5	k.A.
Industrie	1,01,5	0,30,5	k.A.
Verkauf	1,01,5	0,30,5	k.A.
Krankenhäuser	0,81,2	0,20,5	0,050,20
Lager	0,81,2	0,20,5	k.A.
Sport	0,81,2	0,20,5	k.A.

TABELLE 4 KOMPAKTHEITSGRAD UND FENSTERFLÄCHENANTEILE

Diese Daten stützen sich auf die folgenden Quellen: [LEG], [Energiepass], [SIA 308/1], [Gebäudebestand], [Gebäudesanierung], [Modernisierung] und eigene Untersuchungen der Autoren.

BEISPIEL MFH:

Das Beispielgebäude wird dem Gebäudenutzungstyp "MFH" und der Baualtersklasse "vor 77" zugeordnet, da seit der Erstellung noch keine Sanierungsmaßnahmen an der Hülle vorgenommen wurden.

Mit einer Energiebezugsfläche von A_{EB} = 1098 m², einer Hüllfläche von A_{H} = 1940 m², einem äußeren Gebäudevolumen von V_{e} = 4158 m³ und einer Gesamtfensterfläche von A_{Fe} = 199,9 m² ergeben sich folgende Kennwerte:

 $A_H/V_e = 0.467 \text{ m}^{-1},$ $A_H/A_{EB} = 1.767 \text{ und}$ $A_{Ee}/A_H = 0.103.$

1.3.1.3. Heizzeit und Klimaeinflüsse

Einen weiteren Einfluss auf den Energieverbrauch eines Gebäudes hat sein Standort und das dort vorherrschende Klima. Dabei wird zwischen dem Klima eines aktuellen Untersuchungszeitraumes – zum Beispiel des Jahres 2000 – und dem langjährigen Mittelwert unterschieden. Der Langzeitmesswert wird zur Energiebedarfsrechnung (Prognose) herangezogen, der tatsächliche Jahreswert zur Auswertung konkreter Messergebnisse.

Die Zusammenhänge zwischen Klima und Energieverbrauch wurden bereits in Kapitel xxx näher beleuchtet. Zusammengefasst sein hier gesagt: Je höher der Dämmstandard und die nutzbaren inneren und solaren Fremdwärmegewinne eines Gebäudes, desto niedriger ist die Heizgrenztemperatur. Mit sinkender Heizgrenztemperatur sinkt die Länge der Heizperiode t_{HP} . Die Heiztage verschieben sich in Richtung Winter, damit sinkt auch die mittlere Außentemperatur ϑ_{am} in der Heizzeit.

Für verschiedene Standorte Deutschlands sind Klimadaten in Form der Gradtagszahl "Gt" dokumentiert. Sie stellt die Summe aller Temperaturdifferenzen zwischen Außentemperatur und mittlerer Innentemperatur ϑ_{i} =20°C über alle Tage einer Heizperiode mit der Heizgrenztemperatur ϑ_{HG} =15°C dar. Weitere Ausführungen folgen in Kapitel 1.4.3.

Für die gesamtenergetische Untersuchung, wie sie hier beschrieben wird, können für das Standardjahr (Langzeitmittel) die in Tabelle 5 angegebenen Klimadaten verwendet werden, wenn keine Ortsdaten vorliegen.

Heizgrenztemperatur ϑ_{HG} , in [°C]	Heiztage t _{HP} , in [d/a]	mittlere Außentemperatur ϑ_{am} , in [°C]
5	120	0,5
7	145	1,7
10	190	3,3
12	225	4,5
15	270	5,5
17	295	6,3
20	330	7,3

TABELLE 5 KLIMADATEN FÜR EINEN MITTLEREN STANDORT IN DEUTSCHLAND

Die Zuordnung, welche Heizgrenztemperatur für das konkret zu bilanzierende Gebäude anzusetzen ist, ist eine Entscheidung, die zum Beispiel anhand der Baualtersklasse oder anhand der Heizleistung am kältesten Tag gefällt werden kann. Eine Hilfe bieten die Werte in Tabelle 6. Dabei ist zu beachten, dass zum Beispiel erhöhte Innentemperaturen (Krankenhaus...) zu einer Verlängerung der Heizzeit führen – auch wenn das Gebäude im Niedrigenergiestandard errichtet ist.

Heizgrenz- tempera- tur ϑ_{HG} , in [°C]	Verhältnis der Wärmegewinne zu den Wärme- verlusten γ, in [-]	Heizlei- stung am kältesten Tag, in [W/m²]		Baua	alterskla	sse bzw. e	energetis	che Kla	sse	
unter 10	über 0,90	≈ 10		·					(UNEH)	РН
10	über 0,75	1030					(EnEV)	NEH	UNEH	PH
12	0,300,75	3060			(82-95)	WSchV	EnEV	NEH	(UNEH)	
15	unter 0,40	60130	vor 77	77-82	82-95	(WSchV)	(EnEV)			
17 bis 20	unter 0,35	über 130	vor 77							

TABELLE 6 BESTIMMUNG DER HEIZGRENZTEMPERATUR

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN 4710], [DIN V 4108-6], [VDI 2067-1], [LEG], [Energiepass] und eigene Untersuchungen und Erfahrungen der Autoren.

BEISPIEL MFH:

Da für das MFH zunächst eine Bedarfsrechnung durchgeführt wird, werden die mittleren Klimadaten verwendet.

Bei einer angenommenen Heizgrenztemperatur von ϑ_{HG} =17°C ergibt sich eine Heizzeit von t_{HP} =295d/a =7080h/a. Die mittlere Außentemperatur in diesem Zeitraum beträgt ϑ_{am} = 6,3°C. Die Heizgrenztemperatur wurde anhand der Baualtersklasse "vor 77" abgeschätzt.

1.3.1.4. Innentemperatur und Regelungseinflüsse

Auf eine Bestimmung der wirklichen Innentemperatur wird im Rahmen einer praktischen Energiebilanzierung in der Regel – aus Kostengründen – verzichtet. Da sie einen großen Einfluss auf die Genauigkeit der Analyse hat, sollte sie vor allem bei großen Projekten anhand von Messungen oder zumindest Untersuchungen zu Nutzungsstrukturen oder Nutzerbefragungen und Aufnahme eingestellter Temperatursollwerte erfasst werden.

Liegen keine genauen Daten vor, können die Anhaltswerte der Tabelle 7 verwendet werden. Sie zeigt Mittelwerte für typische Gebäudenutzungstypen.

Soll-Innentemperatur ϑ_i , in [°C]								
Gebäudenutzungstyp	innerhalb der wärm	egedämmten Hülle	außerhalb der wärmegedämmten Hülle					
	innerhalb der Nut-	außerhalb der Nut-	Keller	Dachraum				
	zungszeit	zungszeit						
Krankenhäuser, Bäder	2123	1416	1014	37				
MFH, EFH, Verwaltung,	1921	1416	1014	37				
Schulen, Verkauf, Re-								
staurants, Theater								
Industrie, Sport	1719	10	1014	37				
Lager	1517	10	1014	37				

TABELLE 7 MITTLERE SOLLINNENTEMPERATUREN NACH GEBÄUDENUTZUNGSTYPEN

Werden mittlere Innentemperaturen messtechnisch erfasst und zeitlich gemittelt, so wird der Effekt der Raumtemperaturabweichungen durch die Regelstrategie mit erfasst. In allen anderen Fällen müssen diese Einflüsse durch das Bilanzverfahren beschrieben werden.

Die technischen Wärmeverluste der Wärmeübergabe an den zu beheizenden Raum, z.B. durch Regelabweichungen von Thermostatventilen, können durch höhere Innentemperaturen und ggf. durch längere Heizzeiten ausgedrückt werden. Gleiches gilt für den Einfluss der Nachtabsenkung oder – abschaltung des Heizsystems, welche die mittlere Innentemperatur vermindern. Im Rahmen der gesamtenergetischen Bilanzierung wird allein die Innentemperatur aufgrund dieser Regeleinflüsse mit Hilfe von zwei Faktoren korrigiert. Der Zusammenhang lautet:

$$\vartheta_{im} = f_{ABS} \cdot f_{REG} \cdot \vartheta_i$$
.

Dabei ist ϑ_i die Sollinnentemperatur, die Faktoren f_{ABS} und f_{REG} die Korrekturfaktoren für den Absenkbetrieb der Heizung bzw. den Einfluss der Raumtemperaturregelung auf die Innentemperatur. Die Korrekturfaktoren sind Näherungswerte und aus anderen Bilanzverfahren (Hessischer Energiepass, VDI 2067 Teil 2 u.a.) abgeleitet. Müssen andere praktische Gegebenheiten abgebildet werden, verweisen die Autoren auf diese Veröffentlichungen oder Simulationsberechnungen.

Der Einfluss des Absenkbetriebes hängt von der Auskühlgeschwindigkeit des Gebäudes ab. Diese ist bestimmt durch die Gebäudeschwere, also die Speichermasse und die Wärmedurchlässigkeit der Hülle (Transmission und Lüftung). Tabelle 8 gibt eine Zusammenstellung für verschiedene Baualtersklassen bzw. Heizlasten. Der Innentemperaturabfall in Absenkzeiten von unter 6 Stunden täglich kann im allgemeinen vernachlässigt werden. Tabelle 9 zeigt Anhaltswerte für den Einfluss der Art der Temperaturregelung auf die Innentemperatur.

Faktor zur Bewertun	g des Absenkbetriebe	s f _{ABS} , in [-]		
Baualtersklasse	Heizlast, in [W/m²]	leichte Bauweise	mittelschwere Bau- weise	schwere Bauweise
			keine Absenkung	
alle	alle	1,00	1,00	1,00
			Absenkung 8h/d	
"vor 77"	150	0,96	0,97	0,97
"77-82" und "82-95"	100	0,96	0,97	0,97
"WSchV"	60	0,97	0,98	0,98
"NEH"	40	0,97	0,98	0,98
"PH" und "UNEH"	10	0,98	0,98	0,99
		Abser	kung 12h/d und Woche	nende
"vor 77"	150	0,92	0,93	0,93
"77-82" und "82-95"	100	0,92	0,93	0,94
"WSchV"	60	0,93	0,94	0,94
"NEH"	40	0,93	0,94	0,95
"PH" und "UNEH"	10	0,94	0,96	0,97

TABELLE 8 FAKTOREN ZUR BEWERTUNG DES ABSENKBETRIEBES FARS

Faktor zur Bewe	Faktor zur Bewertung der Temperaturregelung f _{REG} , in [-]							
Radiatorenhei-	ohne zentrale Vorregelung, manuelle Nachregelung	1,08						
zung	mit zentraler Vorregelung, aber Raumregelung manuell	1,06						
	mit zentraler Vorregelung und Thermostatventilen	1,03						
	mit adaptiver Zentralregelung und Einzelraumregelung	1,011,02						
Fußbodenhei-	mit Vorregelung, ohne Einzelraumregelung	1,041,06						
zung	mit Vorregelung, mit Einzelraumregelung	1,02						
Elektrische	Direktheizung	1,011,03						
Heizung	Speicherheizung mit Einzelraumregelung	1,08						
	Speicherheizung mit Einzelraumregelung und witterungsgeführter Vorregelung	1,021,04						
Warmlufthei-	ohne Regelung	1,08						
zung	mit zentraler Regelung	1,04						
	mit Einzelraumregelung	1,02						

TABELLE 9 FAKTOREN ZUR BEWERTUNG DER TEMPERATURREGELUNG FREG

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [VDI 2067 Bl.2], [Energiepass], [DIN V 4701-10], [DIN V 4108-6], [SIA 380/1], [LEG] und eigene Untersuchungen und Erfahrungen der Autoren.

BEISPIEL MFH:

Für das untersuchte Gebäude wird eine Soll-Innentemperatur von ϑ_i =20°C angenommen. Die Heizung soll täglich zwischen 22 Uhr und 6 Uhr für 8 Stunden abgesenkt werden, damit ist f_{ABS}= 0,97 für ein mittelschweres Gebäude.

Die Wärmeübergabe erfolgt über Radiatoren. Die Vorlauftemperatur wird witterungsgeführt vorgeregelt, in den Räumen befinden sich Thermostatventile. Der Faktor zur Bewertung der Temperaturregelung beträgt f_{REG}=1,03.

Damit ergibt sich eine mittlere Innentemperatur von:

$$\vartheta_{im} = f_{ABS} \cdot f_{REG} \cdot \vartheta_i = 0.97 \cdot 1.03 \cdot 20^{\circ}C = 19.98^{\circ}C = 20^{\circ}C$$
.

1.3.2. Analyse der Wärmeverluste und –gewinne des beheizten Bereiches eines Gebäudes

1.3.2.1. Wärmeverluste durch Transmission

Die Transmissionswärmeverluste durch die Außenbauteile sind ein Maß der Wärmeleitung in den Bauteilen und des Wärmeübergangs an den Oberflächen eines Gebäudes. Sie berücksichtigen desweiteren den Einfluss von Wärmebrücken. Im allgemeinen Fall kann die folgende Formel zur Bestimmung herangezogen werden:

$$\label{eq:qt} q_{T} = \frac{\displaystyle \sum A_{Bauteil} \cdot U_{Bauteil} \cdot f_{MIN} \cdot (\vartheta_{im} - \vartheta_{am})}{A_{FB}} \cdot t_{HP} \,.$$

Zur Bestimmung des Wärmeverlustes werden alle Bauteilflächen $A_{Bauteil}$, die die thermische Hülle eines Gebäudes umschließen, mit den zugehörigen Wärmedurchgangskoeffizienten $U_{Bauteil}$, der mittleren Temperaturdifferenz zwischen Innentemperatur ϑ_{im} und Außentemperatur ϑ_{am} und der Länge der Heizzeit t_{HP} multipliziert und anschließend aufsummiert. Ein Reduktionsfaktor t_{MIN} berücksichtigt das Angrenzen von Bauteilen an unbeheizte Gebäudezonen oder Erdreich (vergleiche Tabelle 10).

Vorhandene Wärmebrücken werden nach diesem Ansatz in einem erhöhten U-Wert des entsprechenden Bauteils berücksichtigt. Da der Kennwert eine spezifische Größe sein soll, wird der Wärmeverlust auf die Fläche A_{EB} bezogen. Dieses oder ähnliche Verfahren sind in vielen anderen Veröffentlichungen bereits beschrieben und sollen hier nicht vertieft werden. Wenn konkrete Bauteilkonstruktionen vorliegen, sollten diese immer anhand der zugehörigen U-Werte (Baustoffkataloge etc.) bewertet werden.

,	Abminderungsfaktoren für Transmissionswärmeverlust von Bauteilen f _{MIN} , in [-]								
		Bauteile gegen Erdreich, unbeheizte Kel-	Bauteile gegen Außenluft	Bauteile gegen beheizte					
		ler oder andere unbeheizte Zonen		Zonen					
	f _{MIN} , in [-]	0,5	1	0					

TABELLE 10 ABMINDERUNGSFAKTOREN F_{MIN}

Eine Vereinfachung des allgemeinen Ansatzes lautet wie folgt:

$$q_T = U_m \cdot (\vartheta_{im} - \vartheta_{am}) \cdot \frac{A_H}{A_{FB}} \cdot t_{HP} \,. \label{eq:qt}$$

Diese Gleichung kann vor allem zur Abschätzung der Transmissionswärmeverluste bestehender Gebäude herangezogen werden, wenn keine Konstruktionsunterlagen und Baupläne vorliegen. Mittlere Wärmedurchgangswerte bestehender Baukonstruktionen je nach Baualtersklasse sind in Tabelle 11 aufgeführt.

Wärmedurchgangswerte für die Gebäudehülle U, in [W/(m²K)]											
Baualtersklasse	"vor 77"	"77-82"	"82-95"	"WSchV"	"NEH"	"UNEH"	"PH"				
Gebäudehülle (Mittelwert)	1,751,10	1,501,00	1,200,80	0,800,50	0,500,25	0,250,10	0,200,10				
Wand	1,601,00	1,250,90	1,000,40	0,500,30	0,400,25	0,300,15	0,150,10				
Boden	1,000,70	0,900,50	0,800,40	0,600,40	0,400,20	0,200,10	0,150,10				
Decken/Dächer	0,900,40	0,600,30	0,400,20	0,300,15	0,250,15	0,200,10	0,150,10				

TABELLE 11 WÄRMEDURCHGANGSWERTE FÜR DIE GEBÄUDEHÜLLE

Für die Abschätzung der Wärmeverluste von Fenstern können die in Tabelle 12 angegebenen Standardwerte herangezogen werden. Der Energiedurchlassgrad g wird bei der Ermittlung der Fremdwärmeleistung aus solarer Einstrahlung benötigt.

Wärmedurchgangswert und E ster	nergiedurchlassgrad für Fen-	U, in [W/(m²K)]	g, in [-]
Cinfo chyoraloguna	Holz-/Kunststoffrahmen	4,20 (3,504,65)	0.06
Einfachverglasung	Metall-/Betonprofilrahmen	4,85 (5,634,28)	0,86
Donnelvergleeung	Holz-/Kunststoffrahmen	2,55 (2,362,68)	0.76
Doppelverglasung	Metall-/Betonprofilrahmen	3,10 (3,802,90)	0,76
de se elte e Misses e elevite el e e	Holz-/Kunststoffrahmen	1,50 (1,331,72)	0.00
doppeltes Wärmeschutzglas	Metall-/Betonprofilrahmen	2,00 (1,692,91)	0,69
draifachas Märmacahutzalas	Holz-/Kunststoffrahmen	1,15 (0,741,49)	0.40
dreifaches Wärmeschutzglas	Metall-/Betonprofilrahmen	1,60 (1,242,57)	0,49

TABELLE 12 WÄRMEDURCHGANGSWERT UND ENERGIEDURCHLASSGRAD FÜR FENSTER

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [Energiepass], [DIN V 4108-6], [Gebäudebestand], [Gebäudesanierung], [Modernisierung], [Kennziffern], [Recknagel 2001] und eigene Untersuchungen und Erfahrungen der Autoren.

BEISPIEL MFH:

Über die genaue Bauteilkonstruktion der Gebäudehülle sind keine Daten vorhanden. Anhand der in Tabelle 11 angegebenen Standardwerte wird eine Abschätzung vorgenommen. Die Flächen wurden anhand des realen Gebäudes angesetzt. Es sind Fenster mit Doppelverglasung und Holzrahmen vorhanden.

Bauteil	A, in [m²]	U, in [W/(m²K)]	f _{MIN} , in [-]	A·U·f _{MIN} , in [W/K]
Dach	504	0,90	1,0	453,6
Wände	732	1,30	1,0	951,6
Fenster	200	2,55	1,0	510,0
Kellerdecke	504	0,70	0,5	176,4

Der Jahreswärmebedarf der Transmission beträgt:

$$\begin{split} \textbf{q}_{T} &= \sum (\textbf{A}_{\text{Bauteil}} \cdot \textbf{U}_{\text{Bauteil}} \cdot \textbf{f}_{\text{MIN}}) \cdot \frac{(\vartheta_{\text{im}} - \vartheta_{\text{am}})}{\textbf{A}_{\text{EB}}} \cdot \textbf{t}_{\text{HP}} \\ &= 2092 \frac{\textbf{W}}{\textbf{K}} \cdot \frac{(20 - 6,3)\textbf{K}}{1098 m^{2}} \cdot 7080 \frac{\textbf{h}}{\textbf{a}} = 185 \frac{\textbf{kWh}}{\textbf{m}^{2}\textbf{a}} \end{split}$$

Der mittlere U-Wert der Außenhülle (incl. Abminderungsfaktoren) beträgt U_m= 1,08 W/(m²K).

1.3.2.2. Lüftungswärmeverluste

Zur Berechnung der spezifischen Wärmeverluste durch Lüftung eines Gebäudes q_V wird das zwischen Gebäude und Umgebung innerhalb der Heizperiode ausgetauschte Raumluftvolumen V_L benötigt. Durch den Bezug auf die Fläche A_{EB} vereinfacht sich der Ansatz, so dass alternativ mit der mittleren Raumhöhe h_R gerechnet werden kann.

$$q_V = n \cdot \frac{V_L}{A_{EB}} \cdot 0.34 \frac{Wh}{m^3 K} \cdot (\vartheta_{im} - \vartheta_{am}) \cdot t_{HP} = n \cdot h_R \cdot 0.34 \frac{Wh}{m^3 K} \cdot (\vartheta_{im} - \vartheta_{am}) \cdot t_{HP} \; . \label{eq:qv}$$

Der Wärmeverlust hängt weiterhin von der mittleren Innentemperatur ϑ_{im} des Gebäudes, der Temperatur der nachströmenden Außenluft ϑ_{am} und der Länge der Heizzeit t_{HP} ab. Die Stoffwerte der Luft sind in der Größe 0,34 Wh/(m³K) zusammengefasst.

Der Luftwechsel des Gebäudes n wird von diversen Einflussfaktoren bestimmt, zum Beispiel der Luftdichtheit der Gebäudehülle, dem mechanischen Luftwechsel einer Lüftungsanlage und vor allem dem Nutzerverhalten. Er ist zeitlich nicht konstant, kann in den Übergangsjahreszeiten das 2 bis 3-fache des Winterluftwechsels annehmen. Die Berechnung des Wärmeverlustes erfolgt mit einer mittleren Luftwechselzahl.

Der Gesamtluftwechsel kann auch anhand von Fensterkontaktmessungen und Fugendurchlassgraden bestimmt werden. Liegen jedoch keine genauen Werte vor, so können die folgenden Formeln und Standardwerte der Tabelle 13 und Tabelle 14 herangezogen werden.

Für Gebäude ohne mechanische Lüftungsanlagen wird der Gesamtluftwechsel n wie folgt abgeschätzt:

$$n = n_{nat} + \Delta n$$
.

Dabei ist n_{nat} ein Mittelwert für den natürlichen Luftwechsel je nach Gebäudenutzungstyp. Er ist in Tabelle 13 für ein Niedrigenergiegebäude angegeben. Der Differenzluftwechsel Δn nach Tabelle 14 dient der Bewertung der Baualtersklasse. Aufgrund der geringeren Gebäudedichtheit älterer Gebäude (vor allem der Fenster) können Zuschläge auf den Luftwechsel gemacht werden.

Für Anlagen mit Wärmerückgewinnung gilt der folgende Zusammenhang:

$$n = (n_{AnI} + n_{Rest}) + \Delta n$$
.

Dabei ist n_{Anl} der Anlagenluftwechsel der mechanischen Lütung, n_{Rest} ein Restluftwechsel aufgrund von Fugendurchlässigkeiten der Gebäudehülle und des Nutzungseinflusses. Beide Werte können überschlägig aus Tabelle 13 entnommen werden. Für den Differenzluftwechsel Δn gelten die bereits gemachten Aussagen.

Der Lüftungswärmeverlust wird zunächst ohne Berücksichtigung von Lüftungswärmegewinnen einer evtl. vorhandenen Lüftungsanlage mit Wärmerückgewinnung berechnet. Eine Wärmerückgewinnung trägt zur Deckung der Wärmeverluste des Gebäudes bei, verbraucht dabei jedoch keine Primärenergie. Sie wird innerhalb des hier beschriebenen Gesamtbilanzverfahren wie ein Wärmeerzeuger (vergleiche Kapitel 1.3.3.4) behandelt.

Die in Tabelle 13 zusammengestellten Luftwechsel gelten für Gebäude ohne Klimatisierung (Raumlufttechnik).

Luftwechsel, in [h ⁻¹]									
	Lüftung	ohne Lüftung	gsanlage	Lüftung mit Lüftungsanlage					
	natürlic	natürlicher Luftwechsel n _{nat}			cher Luftwe	chsel n _{Anl}	Restluftwe	chsel n _{Rest}	
							bei be-	bei nicht	
	in der	außerhalb		in der Nut-	außer-		standener	bestan-	
Gebäudenut-	Nutzungs-	der Nut-	Mittelwert	zungszeit	halb der	Mittelwert	Dicht-	dener	
zungstyp	zeit	zungszeit	witterwert	Zurigszeit	Nut-	witterwert	heitsprü-	Dicht-	
	2611	Zurigszen			zungszeit		fung (n50	heitsprü-	
							<= 1,0)	fung	
EFH	0,6	0,6	0,6	0,6	0,6	0,6	0,1	0,2	
Krankenhaus	0,6	0,6	0,6	0,6	0,6	0,6	0,1	0,2	
MFH	0,6	0,6	0,6	0,6	0,6	0,6	0,1	0,2	
Verkauf	1,0	0,2	0,5	0,8	0,0	0,3	0,1	0,2	
Industrie	1,0	0,2	0,4	0,8	0,8	0,8	0,1	0,2	
Verwaltung	1,0	0,2	0,4	0,8	0,0	0,2	0,1	0,2	
Restaurants	1,0	0,2	0,4	0,8	0,0	0,2	0,1	0,2	
Schulen	1,0	0,2	0,4	0,8	0,0	0,2	0,1	0,2	
Bühnen/Säle	0,6	0,2	0,4	0,4	0,0	0,2	0,1	0,2	
Bäder	0,5	0,1	0,3	0,4	0,0	0,2	0,1	0,2	
Lager	0,4	0,2	0,3	0,2	0,0	0,1	0,1	0,2	
Sport	0,5	0,1	0,2	0,4	0,0	0,1	0,1	0,2	

TABELLE 13 NATÜRLICHER LUFTWECHSEL, ANLAGENLUFTWECHSEL UND RESTLUFTWECHSEL

Der Restluftwechsel für Gebäude mit mechanischer Lüftungsanlage n_{Rest} hängt von der geprüften Gebäudedichtheit (Blower Door Messung) ab. Haben solche Messungen nicht stattgefunden oder die untersuchten Gebäude den Dichtheitstest nicht bestanden, so ist mit dem größeren Wert für n_{Rest} zu rechnen.

Baualtersklasse	Differenzen für Luftwechsel ∆n, in [h ⁻¹]
"vor 77"	+0,2 +0,3
"77-82" und "82-95"	+0,1 +0,2
"WSchV"	±0,0 +0,1
"NEH" und ggf. "UNEH"	±0,0
"PH" und "UNEH"	-0.1 +0.0

TABELLE 14 DIFFERENZLUFTWECHSEL JE NACH BAUALTERSKLASSE

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [Energiepass], [SIA 380/1], [DIN V 4108-6], [Recknagel 2001], [LEG] und eigene Untersuchungen der Autoren.

BEISPIEL MFH:

Für das MFH der Baualtersklasse "vor 77" ohne Lüftungsanlage wird folgender Luftwechsel bestimmt: $n = n_{nat} + \Delta n = 0.6h^{-1} + 0.3h^{-1} = 0.9h^{-1} \,.$

Bei einer geschätzten mittleren Raumhöhe von $h_R=2,5m$ ergibt sich ein spezifischer Wärmeverlust für Lüftung von:

$$\begin{split} q_{V} &= n \cdot h_{R} \cdot 0.34 \frac{Wh}{m^{3}K} \cdot (\vartheta_{im} - \vartheta_{am}) \cdot t_{HP} \\ &= 0.9 \frac{1}{h} \cdot 2.5m \cdot 0.34 \frac{Wh}{m^{3}K} \cdot (20 - 6.3)K \cdot 7080 \frac{h}{a} = 74 \frac{kWh}{m^{2}a} \end{split}$$

1.3.2.3. Solarer Fremdwärmeanfall

Die solaren Strahlungswärmegewinne durch Fenster hängen von verschiedenen Einflussgrößen ab. Zum einen von der Größe der Fensterfläche A_{Fe} , deren Ausrichtung und der damit verbundenen globalen Einstrahlung G, zum anderen vom Energiedurchlassgrad g der Fenster und einem Minderungsfaktore r (für Verschattung, Verschmutzung, den nichttransparenten Rahmenanteil usw.). Eine ausführliche Bilanzgleichung ist die folgende:

$$q_S = \frac{\sum g \cdot r \cdot G \cdot A_{Fe}}{A_{EB}}.$$

Sind keine genauen Werte für den Energiedurchlassgrad g, den Minderungsfaktor r und die globale Einstrahlung G bekannt, so kann die Gleichung wie folgt vereinfacht und mit Mittelwerten gerechnet werden:

$$\label{eq:qs} q_S = g_m \cdot r_m \cdot G_m \cdot \frac{A_{Fe}}{A_{FB}} \,.$$

Eine sinnvolle Annahme für den Minderungsfaktor ist r_m=0,36. Anhaltsgrößen für die mittlere Globalstrahlung G_m können Tabelle 15, für den Energiedurchlassgrad g_m Tabelle 12 entnommen werden.

Der Kennwert " A_{Fe}/A_{EB} " kann aus der Kompaktheit des Gebäudes (A_H/A_{EB}) und dem Fensterflächenanteil (A_{Fe}/A_{EB}) bestimmt werden. Kennwerte für diese beiden Größen sind in Kapitel 1.3.1.2. angegeben.

$$\frac{\mathsf{A}_{\mathsf{Fe}}}{\mathsf{A}_{\mathsf{BB}}} = \frac{\mathsf{A}_{\mathsf{Fe}}}{\mathsf{A}_{\mathsf{H}}} \cdot \frac{\mathsf{A}_{\mathsf{H}}}{\mathsf{A}_{\mathsf{BB}}}$$

Globalstrahlung G, in [kWh/(m²a)]							
Heizgrenztemperatur ϑ_{HG} , in [°C]	10	12	15	17			
Länge der Heizzeit t _{HP} , in [d/a]	190	225	170	295			
Mittelwert G _m für N,S,O,W	170	240	330	380			
Ost	155	220	325	375			
Süd	270	370	490	560			
West	155	230	325	375			
Nord	100	140	185	210			
Dach (Neigung >30°)	225	370	545	645			

TABELLE 15 GLOBALSTRAHLUNG JE NACH HEIZGRENZTEMPERATUR

Andere Bilanzverfahren, wie zum Beispiel der Hessische Energiepass oder die DIN V 4108 Teil 6 können zur Ermittlung von Einzelkennwerten (g, r, G) alternativ herangezogen werden. Es muss jedoch beachtet werden, dass die Globalstrahlung G in diesen Verfahren meist nur für eine Heizgrenztemperatur angegeben ist.

Die Daten dieses Kapitels sich auf die folgenden Quellen: [Energiepass], [DIN V 4108-6], [LEG], [VDI 2067 Bl. 2].

BEISPIEL MFH:

Bei der Vorort-Besichtigung des MFH wurden die Größen der Fensterflächen und ihre Ausrichtung protokolliert. Die Werte für die globale Einstrahlung G sind Tabelle 15 entnommen. Der Energiedurchlassgrad wird anhand der Tabelle 12 für Doppelverglasung mit g_m=0,76 abgeschätzt.

Richtung	G, in [kWh/(m²a)]	r, in [-]	g, in [-]	A _{Fe} , in [m²]	G⋅r⋅g⋅A _{Fe} , in [kWh/a]
N	210	0,36	0,76	36 · 1,68	3475
S	560	0,36	0,76	48 · 1,68	12355
0	375	0,36	0,76	21 · 1,40	3016
W	375	0,36	0,76	21 · 1,40	3016

Der Fremdwärmeanfall aus solarer Einstrahlung beträgt:

$$q_{S} = \frac{\sum G \cdot r \cdot g \cdot A_{Fe}}{A_{EB}} = \frac{(3475 + 12355 + 3016 + 3016)kWh}{1098m^{2} \cdot a} = 20 \frac{kWh}{m^{2}a}$$

1.3.2.4. Innerer Fremdwärmeanfall

Innerhalb eines Gebäudes fällt Fremdwärme an, die teilweise zur Beheizung des Gebäudes beiträgt. Den nutzbaren Anteil nennt man Fremdwärmegewinn. Anhand der folgenden Bilanzgleichung kann der innere Fremdwärmeanfall bestimmt werden:

$$q_I = \dot{q}_{IG} \cdot t_{HP} + q_{HG} + q_{WG} = q_{IG} + q_{HG} + q_{WG}$$
.

Dabei wird der innere Fremdwärmeanfall durch Verteilleitungen und Speicher der Heizung und Lüftung q_{HG} sowie der Trinkwarmwassererwärmung q_{WG} aus den Einzelwerten der Kapitel 1.3.3.2, 1.3.3.3, 1.3.4.3 und 1.3.4.4 entnommen.

$$q_{HG} = (q_{HG,d} + q_{HG,s})$$
 und $q_{WG} = (q_{d,WG} + q_{s,WG})$.

Diese Werte müssen also alle bereits bekannt sein, wenn der innere Fremdwärmeanfall bestimmt werden soll. Die richtige Reihenfolge der Bilanzierung wird im Formblatt zum Gesamtbilanzverfahren (Anhang 2) gezeigt.

Für Gebäude verschiedener Nutzungstypen können Werte für die innere Fremdwärme aus Personen, Geräten und Beleuchtung \dot{q}_{iG} aus Tabelle 16 abgeschätzt werden. Der tabellierte Wert ist noch mit der Heizzeit t_{HP} zu multiplizieren, um die Jahresenergiemenge q_{iG} zu erhalten. Genauere Werte können mit anderen Bilanzverfahren (z.B. Hessischer Energiepass) bestimmt werden.

Gebäudenutzungstyp	innere Fremdwärmeleistung \dot{q}_{IG} , in [W/m²]	Gebäudenutzungstyp	innerer Fremdwärmeleistung \dot{q}_{IG} , in [W/m²]
Lager	1,3	Sport	3,9
Schulen	1,54,7	Krankenhäuser	4,15,8
EFH	2,5	Industrie	5,6
Bühnen/Säle	3,1	Verkauf	5,9
MFH	3,2	Bäder	6
Verwaltung	3,56,4	Restaurant	17

TABELLE 16 INNERE FREMDWÄRMELEISTUNG (OHNE WÄRMEVERTEILUNG UND -SPEICHE-RUNG)

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [Energiepass], [SIA 380/1], [DIN V 4108-6], [Recknagel 2001], [LEG] und [VDI 2067 Bl. 2].

BEISPIEL MFH:

Die Reihenfolge der energetischen Bewertung ist an dieser Stelle nicht exakt wiedergegeben. Die Bestimmung des Fremdwärmeanfall aus der Anlagentechnik sei hier bereits erfolgt.

Für das Gebäude werden folgende Werte für die Fremdwärme bestimmt:

Heizung / Lüftung Verteilung: $q_{dHG} = 31 \text{ kWh/(m}^2\text{a})$

Speicherung: $q_{sHG} = 0 \text{ kWh/(m}^2\text{a})$

Trinkwarmwasserbereitung Verteilung: Q_{d WG} = 8 kWh/(m²a)

Speicherung: $q_{s,WG} = 0 \text{ kWh/(m}^2\text{a})$

Die Fremdwärmeleistung aus Personen, Geräten und Beleuchtung ergibt sich zu:

$$q_{IG} = \dot{q}_{IG} \cdot t_{HP} = 3.2 \frac{W}{m^2} \cdot 7080 \frac{h}{a} = 22656 \frac{Wh}{m^2 a} = 23 \frac{kWh}{m^2 a}$$

Die innere Fremdwärmeleistung für das Gebäude beträgt:

$$q_{I} = q_{IG} + q_{HG} + q_{WG} = 23 \frac{kWh}{m^{2}a} + 31 \frac{kWh}{m^{2}a} + 8 \frac{kWh}{m^{2}a} = 62 \frac{kWh}{m^{2}a} \,.$$

1.3.2.5. Nutzung der Fremdwärmegewinne

Der Fremdwärmeanfall zählt zur ungeregelten Wärmeabgabe. Das heißt, die Wärmemengen fallen auch an, wenn sie nicht zur Heizung benötigt werden. Die Höhe der für Heizzwecke nutzbaren solaren und inneren Wärmegewinne hängt vom Ausnutzungsgrad der Fremdwärme η ab. Dieser wird von der Art der Regelung der Wärmeübergabe an den Raum, aber auch vom Gebäude selbst bestimmt.

In Gebäuden mit sehr trägen Regelungen, sehr geringen Speichermassen und geringen Wärmeverlusten (Transmission und Lüftung) kann die Fremdwärme nur zu einen geringen Prozentsatz wirklich genutzt werden. Im umgekehrten Fall, das heißt in Gebäuden mit schnellen Regelungen, hohen Speichermassen und hohen Wärmeverlusten, wird die Fremdwärme dagegen sehr gut ausgenutzt.

Zu Bestimmung des Ausnutzungsgrades geben verschiedene Veröffentlichungen unterschiedliche Näherungen, da nur Simulationsberechnungen exakte Ergebnisse liefern können. Im Rahmen des gesamtenergetischen Berechnungsverfahrens wird der folgende vereinfachte Ansatz gewählt:

$$\eta = f_{\eta} \cdot (1 - 0.2 \cdot \gamma)^*$$
.

_

 $^{^*}$ Hier ist im Buch der folgende Ansatz gemacht worden: $\eta = f_{\eta} \cdot (1-0.3 \cdot \gamma)$.

Dabei kann der Bewertungsfaktor für die Art der Regelung f_{η} aus Tabelle 17 abgeschätzt werden. Das Gewinn-Verlust-Verhältnis γ wird anhand des bereits bekannten Fremdwärmeanfalls (q_I und q_S) und der Wärmeverluste (q_T und q_V) bestimmt:

$$\gamma = \frac{q_I + q_S}{q_T + q_V}.$$

Regelungsart	Bewertungsfaktoren für Fremdwärmenutzung f_n , in [-]*	Beispiele
ohne zentrale Vorregelung, manuelle Nachregelung	0,40	Wärmeerzeuger mit Festtemperatur + Handventile
ohne zentrale Vorregelung, aber mit Nachregelung	0,85	Wärmeerzeuger mit Festtemperatur + Thermostatventile
mit zentraler Vorregelung, und Nachregelung	0,90	Wärmeerzeuger mit witterungsgeführter Regelung + Thermostatventile
mit zentraler Vorregelung, und Nachregelung	0,95	Wärmeerzeuger mit witterungsgeführter Regelung + Einzelraumregelung

TABELLE 17 BEWERTUNGSFAKTOREN FÜR DIE FREMDWÄRMENUTZUNG

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [Energiepass], [SIA 380/1], [DIN V 4108-6], [Recknagel 2001], [LEG], [VDI 2067 BI. 2].

BEISPIEL MFH:

Das Gewinn-Verlust-Verhältnis beträgt für das bilanzierte MFH:

$$\gamma = \frac{q_1 + q_S}{q_T + q_V} = \frac{(62 + 20)kWh/(m^2a)}{(185 + 74)kWh/(m^2a)} = 0.317 \; .$$

Da die Regelung der Wärme in den Räumen mit Thermostatventilen erfolgt und eine witterungsgeführte Vorlauftemperaturregelung vorhanden ist, wird der Bewertungsfaktor für die Fremdwärmenutzung nach Tabelle 17 mit f_n =0,90 angesetzt.

Der Fremdwärmenutzungsgrad beträgt:

$$\eta = f_n \cdot (1 - 0.2 \cdot \gamma) = 0.90 \cdot (1 - 0.2 \cdot 0.317) = 0.843$$
 .

1.3.2.6. Überprüfung der Heizgrenztemperatur

Die eingangs gewählte Heizgrenztemperatur ϑ_{HG} kann und sollte anhand der Bilanzbestandteile überprüft werden. Die benötigten Größen sind die mittlere Innen- und Außentemperatur ϑ_{im} und ϑ_{am} sowie der Fremdwärmenutzungsgrad η und das Gewinn-Verlust-Verhältnis γ . Die folgende Formel wird dazu herangezogen:

$$\vartheta_{HG} = \vartheta_{im} - \eta \cdot \gamma \cdot (\vartheta_{im} - \vartheta_{am})$$
.

Liegen der eingangs geschätzte Wert und der überprüfte Wert so weit auseinander, dass eine andere Heizgrenztemperatur gewählt werden müsste (Abweichung etwa $\pm 1...2$ K), sollte in Erwägung gezogen werden, die Rechnung zu wiederholen. Dies ist allerdings nur unter Anwendung von Software zu empfehlen.

BEISPIEL MFH:

Für das MFH beträgt die überprüfte Heizgrenztemperatur:

$$\vartheta_{HG} = \vartheta_{im} - \eta \cdot \gamma \cdot (\vartheta_{im} - \vartheta_{am}) = 20^{\circ}\text{C} - 0.843 \cdot 0.317 \cdot (20 - 6.3)\text{K} = 16.3^{\circ}\text{C} \; .$$

Dabei wurden für das Gewinn-Verlust-Verhältnis und den Fremdwärmenutzungsgrad die vorher berechneten Einzelkennwerte herangezogen. Dieser Wert stimmt hinreichend genau mit der eingangs gewählten Heizgrenztemperatur von ϑ_{HG} =17°C überein.

^{*} Hier sind im Buch folgende Werte angesetzt worden: 0,2 - 0,7 - 0,8 - 0,9.

1.3.3. Verluste des Heizungs- und Lüftungssystems

1.3.3.1. Regelungseinflüsse

Bei der Bilanzierung von Wärmeverlusten Verteilleitungen bzw. Verteilkanäle und Heizwasserspeicher muss berücksichtigt werden, dass nicht alle Leitungsteile und Speicher ständig durchströmt werden. Ursache dafür ist die vorhandene zentrale Regelstrategie (Nacht- oder Wochenendabschaltung) oder auch die Raumtemperaturregelung.

Anbindeleitungen an einen Heizkörper werden beispielsweise nur dann durchströmt, wenn die Thermostatventile geöffnet sind. Sind sie geschlossen, kühlt das Heizwasser in diesen Leitungsteilen ab.

Einflüsse der Betriebsweise werden vereinfachend durch den Faktor für den Anlagenbetrieb f_{BH} ausgedrückt. Für übliche Anwendungsfälle sind diese Faktoren in Tabelle 18 angegeben. Die Werte sind als Näherungswerte zu verstehen.

Betriebsweise	Gebäudeart	Komponenten	f _{BH} , in [-]
durchgehender		Speicher	1,00
Betrieb	alle	ständig durchflossene Leitungsteile	1,00
Dethen		nicht ständig durchflossene Leitungsteile	0,50
		Speicher	ca. 1,00
mit Absenkung für	MFH und EFH	ständig durchflossene Leitungsteile	ca. 1,00
bis zu 8 h/d		nicht ständig durchflossene Leitungsteile	ca. 0,50
DIS 2u O II/u	sonstige Gebäude	genauer bestimmen mit Nutzungstagen pro Jahr und Nutzungsstunden pro Tag	
		Speicher	ca. 1,00
mit Abschaltung für	MFH und EFH	ständig durchflossene Leitungsteile	0,75
6 h/d		nicht ständig durchflossene Leitungsteile	0,38
011/4	sonstige Gebäude	genauer bestimmen mit Nutzungstagen pro Jahr und Nutzungsstunden pro Tag	
		Speicher	ca. 1,00
mit Abschaltung für	MFH und EFH	ständig durchflossene Leitungsteile	0,67
8 h/d		nicht ständig durchflossene Leitungsteile	0,34
011/4	sonstige Gebäude	genauer bestimmen mit Nutzungstagen pro Jahr und	
	soristige Genaude	Nutzungsstunden pro Tag	

TABELLE 18 EINFLUSSFAKTOREN FÜR DEN ANLAGENBETRIEB F_{BH}

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [LEG] und eigene Berechnungen der Autoren.

BEISPIEL MFH:

Die Heizungsanlage besitzt keinen Heizwasserspeicher. Das Temperaturniveau der Heizung wird täglich für 8 Stunden abgesenkt. Da das System nicht komplett abgeschaltet wird, sondern eine Temperaturabsenkung vorliegt, wird vereinfachend angenommen, dass die Leitungsteile in dieser Zeit wie im normalen Betrieb durchflossen werden.

Für die ständig durchströmten Leitungsteile gilt somit f_{BH} =1,0. Für die Anbindeleitungen, die nur bei Wärmeanforderung des Heizkörpers durchströmt werden, wird vereinfachend ein Mittelwert von f_{BH} =0,5 angenommen.

1.3.3.2. Wärmeverluste des Verteilsystems

Die Verteilverluste des Wärmeversorgungsnetzes gewinnen im Rahmen abnehmender Bedarfswerte hochgedämmter und auf minimierten Lüftungswärmebedarf ausgelegter Gebäude immer mehr an Bedeutung. Im Gebäudebestand sind sie durch Erfassung der tatsächlich verlegten Rohrlängen, durch stichprobenartige Vor- und Rücklauftemperaturmessung in der Zentrale und an einzelnen Verbraucherübergabestationen sowie durch Bewertung der Dämmung und einzelne Oberflächentemperaturmessungen recht genau bestimmbar.

Die Ermittlung der Wärmeabgabe der Heizwasserverteilleitungen $q_{d,H}$ kann nach einem allgemeinen Ansatz erfolgen:

$$\label{eq:qdh} q_{d,H} = \frac{\sum U_{Rohr} \cdot \left(\vartheta_{im,Rohr} - \vartheta_{am,Rohr}\right) \cdot L}{A_{EB}} \cdot t_{HP} \; .$$

Über den Zeitraum der Heizperiode t_{HP} werden die Wärmeverluste der einzelnen Rohrabschnitte L bestimmt und aufsummiert. Die Höhe des Wärmeverlustes wird durch die mittleren Innentemperatur $\vartheta_{im,Rohr}$, die mittlere Umgebungstemperatur $\vartheta_{am,Rohr}$ und den längenbezogenen Dämmstandard U_{Rohr} bestimmt. Für die vereinfachte Anwendung gilt:

$$\label{eq:qdh} q_{d,H} = \sum \! \! \left(f_{BH} \cdot \dot{q}_L \cdot \! \frac{L}{A_{EB}} \right) \! \! \cdot \! t_{HP} \; .$$

Die zur Berechnung notwendigen Energiekennwerte \dot{q}_L (Wärmeabgabe eines Rohrabschnittes) und L/A_{EB} (Länge der Rohrleitungen je Energiebezugsfläche) können anhand von Standardwerten aus den Tabelle 19 bis Tabelle 21 abgeschätzt werden. Die tabellierten Rohrleitungslängen gelten für übliche Ausführungsarten des Verteilnetzes. Es ist jedoch empfehlenswert, die verlegten Rohrleitungslängen anhand der realen Verhältnisse zu bestimmen.

verlegte Roh	rleitungen L/A _{EB} , in [m/m ²]		A _{EB} bis 300m ²	A _{EB} ab 300m ²
	Gesamtleitungen davon:		0,271,27	0,030,92
	nicht ständig durchflosse-	außerhalb der gedämmten Hülle	0,000,31	0,000,18
zentrale Versorgung	ne Leitungen (Anbinde- leitungen)	innerhalb der gedämmten Hülle	0,101,06	0,020,69
versorgarig	ständig durchflossene	außerhalb der gedämmten Hülle	0,000,42	0,000,25
	Leitungen (Steig- und Verteilleitungen)	innerhalb der gedämmten Hülle	0,050,51	0,010,25
	Gesamtleitungen davon:	0,341,06	0,340,79	
wohnungs- zentral Ver-	nicht ständig durchflosse- ne Leitungen (Anbinde- leitungen)	innerhalb der gedämmten Hülle	0,200,69	0,260,69
sorgung	ständig durchflossene Leitungen (Verteilleitun- gen)	innerhalb der gedämmten Hülle	0,070,38	0,030,10
dezentrale Versorgung	Gesamtleitungen:		0,00	0,00

TABELLE 19 VERLEGTE ROHRLEITUNGSLÄNGEN DES HEIZWASSERNETZES

verlegte Lüft	ungsleitungen L/A _{EB} , in [m/	A _{EB} bis 300m ²	A _{EB} ab 300m ²	
	Gesamtleitungen davon:		0,200,29	0,160,20
zentrale Versorgung nicht ständig durchströmte Zuluftleitungen (Anbinde- leitungen) ständig durchströmte Zuluftleitungen (Verteil- leitungen)	nicht ständig durchströmte	außerhalb der gedämmten Hülle	0,00	0,00
	• •	innerhalb der gedämmten Hülle	0,14	0,14
	ständig durchströmte	außerhalb der gedämmten Hülle	0,000,15	0,000,05
	• •	innerhalb der gedämmten Hülle	0,000,15	0,000,05
dezentrale Versorgung	Gesamtleitungen:		0,00	0,00

TABELLE 20 VERLEGTE ROHRLEITUNGSLÄNGEN IN LÜFTUNGSNETZEN

Wärmeabgabe von Rohrleitungen und Luftleitungen \dot{q}_L , in [W/m]										
		außerh		gedämmt rlegt	en Hülle	inn	innerhalb der gedämmten Hülle verlegt			
		DN 10-15	DN 20-32	DN 40-65	DN 80- 100	DN 10-15	DN 20-32	DN 40-65	DN 80- 100	
	ungedämmt	39,3	65,0	106,8	163,2	34,7	57,3	94,2	144,0	
90/70°C	halbe Dämmdicke wie EnEV	20,1	27,7	38,8	52,4	17,8	24,4	34,2	46,2	
(konstant)	gedämmt nach EnEV	10,1	12,6	12,1	12,1	8,9	11,1	10,7	10,7	
	doppelte Dämmdicke wie EnEV	7,6	8,1	8,1	8,1	6,7	7,1	7,1	7,1	
	ungedämmt	24,3	40,1	66,0	100,8	19,6	32,5	53,4	81,6	
90/70°C	halbe Dämmdicke wie EnEV	12,4	17,1	24,0	32,4	10,1	13,9	19,4	26,2	
(geregelt)	gedämmt nach EnEV	6,2	7,8	7,5	7,5	5,0	6,3	6,0	6,0	
	doppelte Dämmdicke wie EnEV	4,7	5,0	5,0	5,0	3,8	4,0	4,0	4,0	
	ungedämmt	18,5	30,6	50,3	76,8	13,9	22,9	37,7	57,6	
70/55°C	halbe Dämmdicke wie EnEV	9,5	13,0	18,3	24,7	7,1	9,8	13,7	18,5	
(geregelt)	gedämmt nach EnEV	4,7	5,9	5,7	5,7	3,6	4,4	4,3	4,3	
	doppelte Dämmdicke wie EnEV	3,6	3,8	3,8	3,8	2,7	2,8	2,8	2,8	
	ungedämmt	14,4	23,9	39,3	60,0	9,8	16,2	26,7	40,8	
55/45°C	halbe Dämmdicke wie EnEV	7,4	10,2	14,3	19,3	5,0	6,9	9,7	13,1	
(geregelt)	gedämmt nach EnEV	3,7	4,6	4,4	4,4	2,5	3,1	3,0	3,0	
	doppelte Dämmdicke wie EnEV	2,8	3,0	3,0	3,0	1,9	2,0	2,0	2,0	
	ungedämmt	8,1	13,4	22,0	33,6	3,5	5,7	9,4	14,4	
35/28°C	halbe Dämmdicke wie EnEV	4,1	5,7	8,0	10,8	1,8	2,4	3,4	4,6	
(geregelt)	gedämmt nach EnEV	2,1	2,6	2,5	2,5	0,9	1,1	1,1	1,1	
	doppelte Dämmdicke wie EnEV	1,6	1,7	1,7	1,7	0,7	0,7	0,7	0,7	
Luftleitung (geregelt)	gedämmt nach EnEV	9,5				11,1				

TABELLE 21 WÄRMEABGABE VON HEIZUNGS- UND LÜFTUNGSLEITUNGEN

Es wird für die Heizung und Lüftung in ständig und periodisch durchströmte Leitungen unterschieden. Ständig durchströmt sind die zentralen Verteilungen und Steigestränge, periodisch wärmeversorgt sind Anbindeleitungen, die nur bei Wärmeanforderung erwärmt werden. Die geringere mittlere Innentemperatur von nicht ständig durchströmten Leitungsteilen wird im Faktor f_{BH} für die Regelung berücksichtigt.

Die mittlere Temperatur der Heizungs- und Lüftungsleitungen hängt zum einen von den Auslegungstemperaturen des Netzes, zum anderen von der Heizkreisauslastung und der Länge der Heizzeit ab. Die Kennwerte der Tabelle 21 gelten für übliche Versorgungsfälle. Die mittlere Temperatur der umgebenden Luft $\vartheta_{\text{am,Rohr}}$ wurde mit 20°C bei Verlegung innerhalb und 12°C bei Lage des Rohrabschnittes außerhalb der wärmegedämmten Hülle angesetzt.

Die längenbezogenen U-Werte der Dämmung gelten für frei angeordnete, gedämmte Rohre. Für Leitungsabschnitte im Estrich, in Schächten und Wänden werden Dämmdicken üblicherweise dünner ausgeführt. Zusammen mit dem umgebenden Material (Estrich, Putz, ...) wird insgesamt eine höhere Dämmwirkung errreicht.

Die Werte für Lüftungsnetze beziehen sich nur auf Verteilleitungen, die mit Temperaturen über Raumtemperaturniveau betrieben werden – also Zuluftleitungen in Netzen mit Wärmepumpen oder Heizregistern. Die Angabe bezieht sich ausschließlich auf Netze mit einer mittleren Betriebstemperatur von 33°C. Die verlegten Leitungslängen gelten für einfache Lüftungsnetze im Wohnungsbau oder Gebäuden mit ähnlicher Nutzung und Ausstattung.

Die Wärmeverluste der Wärmeverteilung werden, sofern sie innerhalb der gedämmten Gebäudehülle auftreten, als innere Fremdwärmeleistung q_{HG,d} angesehen.

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [Ikarus 5], [BBR Zwischenbericht], [LEG], [Energiepass], [Hauplanung] und weitere eigene Untersuchungen von Bestandsgebäuden der Autoren.

BEISPIEL MFH:

Die Energiekennwerte für das Heizwassernetz werden nach den im Gebäude vorgefundenen Gegebenheiten erstellt. Die Heizwasserleitungen verlaufen vom Kessel ab unter der Kellerdecke. Sie sind gut gedämmt. Von dort aus steigen sie ungedämmt in die Wohnungen. Die Verlegung erfolgt strangweise auf Putz mit kurzen Heizkörperanbindungen; es sind keine im Estrich verlegten Leitungen vorhanden. Die Systemtemperaturen betragen etwa 70/55°C.

		L, in [m]	L/A _{EB} , in [m/m ²]	f _{BW} , in [-]	q _L , in [W/m]	$L/A_{EB} \cdot f_{BW} \cdot \dot{q}_{L}$, in [W/m ²]	q _{d,H} , in [kWh/(m²a)]
innerhalb der Wärmege-	Verteil- und Steigleitungen	250	0,228	1,0	13,9	3,169	22,4
dämmten Hülle	Anbindeleitun- gen	200	0,182	0,5	13,9	1,265	9,0
außerhalb der	Verteil- und Steigleitungen	250	0,228	1,0	5,9	1,345	9,5
wärmege- dämmte Hülle	Anbindeleitun- gen	0	0,000	0,8	0,0	0,000	0,0

In der Heizzeit t_{HP} = 295d/a = 7080h/a ergibt sich ein Wärmeverlust aller Heizrohrleitungen von $q_{d,H}$ =41kWh/(m²a) und ein innerer Fremdwärmeanfall von $q_{HG,d}$ =31 kWh/(m²a).

1.3.3.3. Wärmeverluste der Heizwasserspeicherung

Bei der Berechnung des Wärmeverlustes eines Heizwasserspeichers werden das Speichervolumen V_S , der auf das Volumen bezogene Dämmstandard $U_{Speicher}$, die mittlere Temperatur innerhalb $\vartheta_{im,speicher}$ und außerhalb $\vartheta_{am,speicher}$ des Speichers innerhalb der Heizperiode t_{HP} berücksichtigt. Folgender allgemeiner Ansatz gilt:

$$\textbf{q}_{\text{s,H}} = \frac{\sum \textbf{U}_{\text{Speicher}} \cdot \left(\vartheta_{\text{im,Speicher}} - \vartheta_{\text{am,Speicher}}\right) \cdot \textbf{V}_{\text{S}}}{A_{\text{EB}}} \cdot \textbf{t}_{\text{HP}} \,.$$

Eine Vereinfachung der Formel liefert nachfolgende Gleichung, in der mittlere Temperaturen und der Dämmstandard in den Größen f_{BW} und \dot{q}_{SP} zusammengefasst sind.

$$\label{eq:qshift} q_{s,H} = \sum \! \left(f_{BW} \cdot \dot{q}_{SP} \cdot \frac{V_S}{A_{EB}} \right) \! \cdot t_{HP} \, .$$

Sind über die Größe des Speichers keine Angaben bekannt, dann kann diese mit Hilfe der Tabelle 22 abgeschätzt werden, sonst führen reale Werte zu genaueren Ergebnissen.

A _{EB} , in [m ²]	80160	160400	4002000	20008000
installiertes Speichervolumen V _S /A _{EB} , in [I/m²]	1,01,3	0,81,0	0,50,8	0,30,5

TABELLE 22 VOLUMEN FÜR HEIZWASSERSPEICHER

Bei Heizwasser-Pufferspeichern hängt der Verlustkennwert des Speichers \dot{q}_{SP} von der mittleren Heizkreistemperatur des angeschlossenen Heizsystems ab. Kennwerte für verschiedene Dämmstandards können Tabelle 23 entnommen werden.

durchschnitt	durchschnittliche Wärmeverlustleistung von Speichern $\dot{q}_{\text{SP}},$ in [W/I]											
		Auslegun	g auf 70/55°C	und höher	Auslegung	auf 55/45°C ui	nd niedriger					
Aufstellung	Volumen, in	Dämmung	Dämmung	Dämmung	Dämmung	Dämmung	Dämmung					
Autstellulig	[1]	gut (ca.	mäßig (bis	schlecht (bis	gut (ca.	mäßig (bis	schlecht (bis					
		10cm)	5cm)	2cm)	10cm)	5cm)	2cm)					
مالہ ماہ ماہ	100	0,70,9	1,11,4	2,02,7	0,30,5	0,50,8	0,91,6					
außerhalb	200	0,50,7	0,81,1	1,62,1	0,20,4	0,40,7	0,71,3					
der wärme-	500	0,40,5	0,60,8	1,21,6	0,20,3	0,30,5	0,51,0					
gedämmten Hülle	1000	0,30,4	0,50,6	1,01,3	0,10,2	0,20,4	0,40,8					
Tiulie	2000	0,20,3	0,40,5	0,81,0	0,10,2	0,20,3	0,30,6					
in a nula alla	100	0,50,7	0,81,1	1,52,2	0,10,4	0,20,6	0,41,1					
innerhalb	200	0,40,6	0,60,9	1,21,7	0,10,3	0,20,4	0,30,9					
der wärme-	500	0,30,4	0,50,7	0,91,3	0,10,2	0,10,3	0,20,6					
gedämmten Hülle	1000	0,20,3	0,40,5	0,71,0	0,10,2	0,10,3	0,20,5					
Tiulle	2000	0,2	0,30,4	0,60,8	0,00,1	0,10,2	0,10,4					

TABELLE 23 WÄRMEABGABE FÜR HEIZWASSERSPEICHER

Die Wärmeverluste der Heizwasserspeicherung sind, sofern sie innerhalb der gedämmten Gebäudehülle auftreten, der inneren Fremdwärme $q_{HG,s}$ zuzurechnen.

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [Energiepass], [BBR Zwischenbericht], [Energiepass] und weitere eigene Untersuchungen von Bestandsgebäuden der Autoren.

BEISPIEL MFH:

Da kein Heizwasserspeicher installiert ist, entfällt diese Rechnung. Der spezifische Wärmeverlust der Heizwasserspeicherung und der Fremdwärmeanfall sind null. $q_{s,H}=0$ kWh/(m^2a) und $q_{HG,s}=0$ kWh/(m^2a).

1.3.3.4. Wärmeerzeugung

Die Verluste der Wärmeerzeugung bestehen eigentlich aus zwei Anteilen: zum einen den immer vorhandenen Wärmeverlusten der Auskühlung und Abstrahlung von der Erzeugeroberfläche, zum anderen den betriebsbedingten Verlusten bei der Energieumwandlung. Diese Betrachtungsweise gilt für alle Erzeuger und wird in Kapitel xxx umfassend erläutert.

Der fixe Anteil – der auf jeden Fall gedeckt werden muss – kann theoretisch wie alle anderen Verluste behandelt werden. Der variable Anteil hängt allein von der Größe der benötigten Energiemenge im System ab (Nutzen plus Verluste der Verteilung, Speicherung und fixe Verluste der Erzeugung). Diese Betrachtungsweise ist noch nicht sehr weit verbreitet, daher gibt es noch keine praktikablen Bilanzverfahren mit Standardwerten. Der aus der EnEV 2002 und zugehörigen Bilanzverfahren bekannte Ansatz der Deckungsanteile und Erzeugeraufwandszahlen wird daher auch für das Gesamtbilanzverfahren übernommen.

Können die Energieverluste der Erzeugung (aus Bereitschaftsverlusten und Betriebsverlusten) als absolute Größen in kWh/a bestimmt werden, dann sind diese Werte den Erzeugeraufwandszahlen vorzuziehen.

Bei der näherungsweisen Bestimmung von Erzeugeraufwandszahlen nach Tabelle 24 sollte berücksichtigt werden: wenn Wärmeerzeuger durch Überdimensionierung oder geringe Nutzenanforderungen sehr wenig ausgelastet sind, steigen die Erzeugerverluste. Dies gilt insbesondere für Konstanttemperaturkessel. Auch mit dem Temperaturniveau des Heizwassers steigen die Aufwandszahlen, vor allem für Wärmepumpen und Brennwertgeräte.

Wärmeerzeuger		Aufwandszahl e _q , in [-]	Hinweise
Nah- und Fern-	c	1,011,02	kompakte Ausführung mit Gehäuse
wärme	für Heizung	1,051,11	Ausführung ohne Gehäuse
Flateria de a Occ	Speichergeräte	1,021,04	
Elektrische Sy-	Durchlaufgeräte	1,001,01	
steme	Luftheizregister	1,00	
	Wasser-Wasser	0,310,33	monovalent
	wasser-wasser	0,220,32	alternativ/parallel
□ la lata a con il anno a	Sole-Wasser	0,360,38	monovalent
Elektrowärme-	Sole-wasser	0,260,34	alternativ/parallel
pumpen	Luft Wasser	0,360,45	monovalent
	Luft-Wasser	0,320,37	alternativ/parallel
	Luft-Luft	0,280,34	
	\/t	1,542,78	Auslastung bis 20%
	Vorratswasserheizer	1,151,30	Auslastung über 20%
		1,252,00	Auslastung bis 20%
	Umlaufwasserheizer	1,151,27	Auslastung über 20%
		1,613,70	Auslastung bis 20%
	Konstant bis Baujahr 1978	1,101,49	Auslastung über 20%
		1,202,78	Auslastung bis 20%
	Konstant ab Baujahr 1979	1,101,39	Auslastung über 20%
Kessel		1,091,15	bis 50 kW
1100001	Niedertemperatur	1,031,10	50120 kW
	rtiodortomporatar	1,001,06	1201200 kW
		1,001,06	Betrieb bei 55/45°C und niedriger
	Brennwert bis 50 kW	1,031,10	Betrieb bei 70/55°C und höher
		0,991,05	Betrieb bei 55/45°C und niedriger
	Brennwert 50120 kW	1,021,09	Betrieb bei 70/55°C und höher
		0,981,04	Betrieb bei 55/45°C und niedriger
	Brennwert 1201200 kW	1,011,08	Betrieb bei 70/55°C und höher
		0,590,65	bis 100 kW
	Erdgas, Propan, Butan	0,520,58	ab 100 kW
BHKW		0,520,64	bis 100 kW
	Diesel	0,450,48	ab 100 kW
		0,560,59	monovalent
	Wasser-Wasser	0,580,63	alternativ/parallel
Brennstoffbetrie-		0,590,65	monovalent
bene Wärmepum- pen	Sole-Wasser	0,560,67	alternativ/parallel
		0,580,67	monovalent
	Luft-Wasser	0,630,73	alternativ/parallel
	Kachelofen	1,431,67	alternativ/paraller
Einzelfeuerstätten	Öleinzelofen	1,431,67	
Emzeneuerstatten	Gaseinzelofen	1,16	
raganarativa C:		1,33	
regenerative Sy- steme	Solaranlagen, Wärmerück- gewinnungen	0,00	

TABELLE 24 ERZEUGERAUFWANDSZAHLEN FÜR DIE HEIZUNG UND LÜFTUNG

Die Angaben der Erzeugeraufwandszahlen für brennstoffbefeuerte Systeme beziehen sich auf den Heizwert H_U . Damit sind die Werte mit denen anderer Bilanzverfahren vergleichbar, auch wenn eine brennwertbezogene Angabe ehrlicher wäre.

Wird ein Gebäude von mehreren Wärmeerzeugern – zum Beispiel einer Wärmepumpe mit elektrischer Nachheizung – versorgt (multivalente Anlage), so sind für jeden Erzeuger Deckungsanteile an der jährlichen Energieanforderung des Gebäudes für die Heizung und Lüftung zu bestimmen. Übliche Werte sind in Tabelle 25 bis Tabelle 27 wiedergegeben.

Deckungsanteile a für Gebäude mit Wasserheizung, in [-]											
	Solaranlage	Grundlast	Spitzenlast	Hinweise							
Anlagen mit einem Erzeuger		1,00									
Anlagen mit Solarunterstützung	0,100,05	0,900,95									
Wärmenumne und Keesel		0,320,92	0,080,68	alternativer Betrieb							
Wärmepumpe und Kessel		0,820,98	0,040,18	paralleler Betrieb							
Wärmepumpe und elektrische Nach- heizung		0,900,95	0,050,10								
zwei Kessel		0,500,85	0,150,50								
BHKW und Kessel		0,600,85	0,150,40								

TABELLE 25 DECKUNGSANTEILE FÜR GEBÄUDE MIT WASSERHEIZUNG

Deckungsanteile a für Gebäude mit Luftheizung, in [-]									
Wärmerückgewinnung	Abluft/Zuluft- Wärmepumpe	Heizregister	Gebäudeklasse						
0,250,33	0,330,67	0,080,33							
0,250,33		0,660,75	NEH						
	0,580,83	0,170,42							
0,500,67	0,330,50								
0,500,67		0,330,50	UNEH						
	0,951,00	0,000,05							
0,951,00	0,000,05								
0,951,00		0,000,05	PH						
	0,951,00	0,000,05							

TABELLE 26 DECKUNGSANTEILE FÜR GEBÄUDE MIT LUFTHEIZUNG

Deckungsanteile a für Gebäude mit Wasser- und Luftheizung, in [-]									
Wärmerückgewinnung statische Heizung Gebäudeklasse									
0,250,33	0,660,75	NEH							
0,500,67	0,330,50	UNEH							
0.951.00	0.000.05	PH							

TABELLE 27 DECKUNGSANTEIL FÜR EINE KOMBINATION AUS WASSER- UND LUFTHEIZUNG

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [Energiepass], [VDI 2067 Bl. 2], [LEG] und eigene Untersuchungen der Autoren sowie Herstellerangaben verschiedener Jahrgänge. Für die genauere Bestimmung von Deckungsanteilen und Wärmeerzeugeraufwandszahlen verweisen die Autoren an dieser Stelle auf diese Veröffentlichungen.

BEISPIEL MFH:

Das Mehrfamilienhaus wird allein von den 1994 eingebauten Niedertemperaturkessel versorgt; der Deckungsanteil beträgt a=1,0. Mit einer eingestellten Kesselleistung von 105 kW wird die Erzeugeraufwandszahl zu $e_{\alpha,H}$ = 1,08 abgeschätzt.

1.3.4. Analyse des Warmwassersystems

1.3.4.1. Warmwassernutzen

Der Warmwassernutzen hängt stark von der Nutzung des Gebäudes und dem spezifischen Flächenbedarf pro Person ab. Für Wohngebäude kann mit Energiewerten von etwa 400...700 kWh/(Person·a) gerechnet werden. Kennwerte für die spezifische mittlere Warmwassernutzwärme in verschiedenen genutzten Gebäuden gibt Tabelle 28. Bei der Verbrauchsanalyse sollten real an Warmwasserzählern gemesse Werte bevorzugt verwendet werden.

Gebäudenut- zungstyp	EFH	MFH	Lager	Verwaltung, Schulen, Ver- kauf, Industrie	Säle/ Bühnen	Sport- stätten, Bäder	Restau- rants	Kran- kenhäu- ser
Warmwassernutz- wärme q _w , in [kWh/(m²a)]	1517	1525	12	79	1517	90100	6070	3035

TABÈLLÉ 28 WARMWASSERNUTZEN NACH GEBÄUDENUTZUNGSTYP

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [Energiepass], [LEG], [SIA 308/1], [VDI 3807-3] und verschiedene eigene Untersuchungen der Autoren.

BEISPIEL MFH:

Für das Mehrfamilienhaus wird ein spezifischer Nutzkennwert für die Warmwasserbereitung von qw=18,0 kWh/(m²a) abgeschätzt.

1.3.4.2. Regelungseinflüsse

Die Regelungseinflüsse auf Komponenten der Warmwasserbereitung lassen sich ebenso begründen und ableiten wie für die Heizung und Lüftung in Kapitel 1.3.3.1 beschrieben.

Bei der Bilanzierung von Wärmeverlusten der Warmwasserverteilleitungen und –speicher muss berücksichtigt werden, dass Leitungsteile und Speicher aufgrund einer Abschaltung (Nacht- oder Wochenendabschaltung) nicht ständig durchströmt sind. Sonst ständig durchflossene Leitungsteile werden dann nur noch bei Zapfung von Wasser durchströmt. Sie kühlen danach aus, bis der nächste Zapfvorgang erfolgt. Diese Einflüsse können anhand der in Tabelle 29 abgegebenen Faktoren für den Anlagenbetrieb f_{BW} abgeschätzt werden.

Betriebsweise	Gebäudeart	Komponenten	f _{BW} , in [-]
ohne Abschaltung	alle	alle	1,00
		Stichleitungen	1,00
	MFH und EFH	Speicher	ca. 1,00
mit Abschaltung		Zirkulationsleitungen bei 6h/d Abschaltung	0,880,92
mit Abschallung		Zirkulationsleitungen bei 8h/d Abschaltung	0,730,75
	sonstige Gebäude	genauer bestimmen mit Nutzungstagen pro J	ahr und Nutzungsstun-
	sonstige Gebaude	den pro Tag	-

TABELLE 29 EINFLUSSFAKTOREN FÜR DEN ANLAGENBETRIEB FBW

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [LEG] und eigene Berechnungen der Autoren.

BEISPIEL MFH:

Das Gebäude verfügt sowohl über einen Wasserspeicher als auch eine Zirkulationsleitung, aber es gibt keine Abschaltung der Warmwasserzirkulation. Für alle Komponenten der Trinkwarmwasserbereitung ist f_{BW}=1,0.

1.3.4.3. Wärmeverluste des Verteilsystems

Die Ermittlung der Wärmeabgabe der Trinkwarmwasserverteilleitungen $q_{d,W}$ kann nach einem allgemeinen Ansatz erfolgen:

$$q_{\text{d,W}} = \frac{\sum U_{\text{Rohr}} \cdot \left(\vartheta_{\text{im,Rohr}} - \vartheta_{\text{am,Rohr}}\right) \cdot L}{A_{\text{FB}}} \cdot t_y \; .$$

Dabei werden über den Zeitraum eines Jahres t_y alle Wärmeverluste der einzelnen Rohrabschnitte L aufsummiert. Die Höhe des Wärmeverlustes wird konkret mit der mittleren Innentemperatur $\vartheta_{\text{im,Rohr}}$, der mittleren Umgebungstemperatur $\vartheta_{\text{am,Rohr}}$ und dem Dämmstandard U_{Rohr} erfaßt. Im praktischen Anwendungsfall sind so detaillierte Daten sicher nicht verfügbar. Daher wird der Ansatz wie folgt vereinfacht:

$$q_{d,W} = \sum \left(f_{BW} \cdot \dot{q}_L \cdot \frac{L}{A_{EB}} \right) \cdot t_y \; . \label{eq:qdw}$$

Zur Anwendung dieser Gleichung werden zwei neue Energiekennwerte benötigt: zum einen die mittlere Wärmeabgabe eines Rohrabschnittes \dot{q}_L , zum anderen die Länge der verlegten Rohrleitungen je Energiebezugsfläche L/A_{EB}.

Beide Kennwerte können anhand von Standardwerten aus Tabelle 30 bzw. Tabelle 31 abgeschätzt werden. Da die Verluste der Verteilung um so geringer sind, je optimierter die Ausführung des Warmwassersystems, d.h. je kürzer die Leitungslängen sind, ist es jedoch empfehlenswert, wenn immer möglich die verlegten Rohrleitungslängen anhand der realen Verhältnisse zu bestimmen. Die tabellierten Rohrleitungslängen gelten für übliche Ausführungsarten des Verteilnetzes.

verlegte Rohrleitung	slängen L/A _{EB} , in [m/m²]		A _{EB} bis 300m ²	A _{EB} ab 300m ²
zentrale Trinkwarm-	Gesamtleitungen davon:		0,320,54	0,190,45
wasserversorgung	nicht ständig durchflossene Leitungen	außerhalb der	0,010,35	0,010,09
	(Stichleitungen)	gedämmten Hülle		
		innerhalb der ge-	0,050,54	0,080,28
		dämmten Hülle		
	ständig durchflossene Leitungen	außerhalb der	0,000,35	0,000,25
	(Zirkulationsleitungen)	gedämmten Hülle		
		innerhalb der ge-	0,090,49	0,050,28
		dämmten Hülle		
dezentrale Trink-	Gesamtleitungen davon:		0,020,06	0,020,06
warmwasserversor-	nicht ständig durchflossene Leitungen	innerhalb der ge-	0,020,06	0,020,06
gung	(Stichleitungen)	dämmten Hülle		

TABELLE 30 VERLEGTE ROHRLEITUNGSLÄNGEN DES TRINKWARMWASSERNETZES

Wärmeabgab	neabgabe von Trinkwarmwasserleitungen $ {f q}_{\!\scriptscriptstyle L} ,$ in [W/m]											
		auß	erhalb de	r gedämm	ten Hülle verlegt	innerha	alb der ged	dämmten l	Hülle ver- legt			
		DN 10- 15	DN 20- 32	DN 40- 65	DN 80- 100	DN 10- 15	DN 20- 32	DN 40- 65	DN 80- 100			
D (=	ungedämmt	24,9	33,2	47,7	68,4	14,9	19,9	28,6	41,0			
nicht ständig durchflossene Leitungen (Stichleitungen)	halbe Dämmdicke wie EnEV	5,7	8,8	13,5	20,7	3,4	5,3	8,1	12,4			
nge nge	gedämmt nach EnEV	4,1	4,6	4,6	4,6	2,5	2,7	2,7	2,7			
nicht durch Leitur (Stich	doppelte Dämm- dicke wie EnEV	3,0	3,4	3,2	3,2	1,8	2,0	1,9	1,9			
1.1.1	ungedämmt	53,5	71,3	102,5	147,1	37,3	49,8	71,5	102,6			
durch- Lei- (Zirku- :un-	halbe Dämmdicke wie EnEV	12,3	18,9	29,0	44,6	8,6	13,2	20,2	31,1			
ständig du flossene tungen (Zi lationsleitun gen)	gedämmt nach EnEV	8,8	9,8	9,8	9,8	6,1	6,8	6,8	6,8			
ständig flossene tungen lationsle gen)	doppelte Dämm- dicke wie EnEV	6,5	7,2	6,9	6,9	4,5	5,1	4,8	4,8			

TABELLE 31 WÄRMEABGABE VON TRINKWARMWASSERLEITUNGEN

Es wird in ständig und nur periodisch durchflossene Leitungen unterschieden. Als ständig durchströmte Leitungen können die konstant auf Temperatur gehaltenen Zirkulations- und Transportleitungen des Warmwassernetzes angesehen werden. Periodisch durchflossen sind Stichleitungen der Warmwasserbereitung, die nur bei Zapfung erwärmt werden.

Die mittlere Temperatur eines ständig durchströmten Rohrabschnittes der Warmwasserverteilung kann mit $\vartheta_{\text{im,Rohr}}$ =50...55°C angenommen werden. Wenn der geforderte Legionellenschutz in der Praxis tatsächlich umgesetzt wird, sind Werte von $\vartheta_{\text{im,Rohr}}$ =55...60°C realistisch. Für nicht ständig auf Temperatur gehaltene Rohrleitungen hängt die mittlere Temperatur stark von der Zapfhäufigkeit ab. Zur Bestimmung der Tabellenwerte ist eine Temperatur von $\vartheta_{\text{im,Rohr}}$ =32°C zugrunde gelegt. Die mittlere Temperatur der umgebenden Luft $\vartheta_{\text{am,Rohr}}$ wurde mit 20°C bei Verlegung innerhalb und 12°C bei Lage des Rohrabschnittes außerhalb der wärmegedämmten Hülle angesetzt.

Die Wärmeverluste der Trinkwarmwasserverteilung können, sofern sie innerhalb der gedämmten Gebäudehülle auftreten, als innere Fremdwärmeleistung angesehen werden. Dabei werden nur Wärmegewinne, die in der Heizzeit anfallen, berücksichtigt.

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [Ikarus 5], [BBR Zwischenbericht], [LEG], [Energiepass], [Hausplanung] und weitere eigene Untersuchungen von Bestandsgebäuden der Autoren.

BEISPIEL MFH:

Für das Gebäude werden nach Ortsbesichtigung und Abschätzung der Verteillängen folgende Kennwerte ermittelt: Die Leitungen verlaufen vom Kessel ab unter der Kellerdecke. Sie sind mäßig gedämmt. Von dort aus steigen sie mäßig gedämmt in Schächten in die Wohnungen. Die Zirkulation ist bis in die obersten Geschosse mitgeführt.

		L, in [m]	L/A _{EB} , in [m/m ²]	f _{BW} , in [-]	q _L , in [W/m]	$L/A_{EB} \cdot f_{BW} \cdot \dot{q}_{L}$, in [W/m ²]	$q_{d,W}$, in [kWh/(m ² a)]
innerhalb der Wärmege-	Zirkulationslei- tungen	60	0,055	1,0	8,6	0,473	4,1
dämmten Hülle	Stichleitungen	200	0,182	1,0	3,4	0,619	5,4
außerhalb der wärmege-	Zirkulationslei- tungen	120	0,109	1,0	18,9	2,060	18,0
dämmten Hülle	Stichleitungen	0	0,000	1,0	0,0	0,000	0,0

Damit ergibt sich für das ganze Jahr ein Wärmeverlust aller Rohrleitungen der Trinkwarmwasserversorgung von $q_{d,W}=27,5$ kWh/(m^2a). Der innere Fremdwärmeanfall in der wärmegedämmten Hülle und in der Heizzeit $t_{HP}=295d/a=7080h/a$ beträgt $q_{WG,d}=8$ kWh/(m^2a).

1.3.4.4. Wärmeverluste der Warmwasserspeicherung

Die Berechnung des Wärmeverlustes eines Trinkwarmwasserspeichers erfolgt in Analogie zur Bewertung eines Heizwasserspeichers nach folgendem Ansatz:

$$\label{eq:qsw} q_{s,W} = \frac{\sum U_{Speicher} \cdot \left(\vartheta_{im,Speicher} - \vartheta_{am,Speicher}\right) \cdot V_S}{A_{EB}} \cdot t_y \,.$$

Dabei werden das Speichervolumen V_s , sein volumenbezogener Dämmstandard $U_{Speicher}$, die mittlere Temperatur innerhalb $\vartheta_{im,speicher}$ und außerhalb $\vartheta_{am,speicher}$ des Speichers über den Verlauf eines Jahres t_y berücksichtigt. Auch dieser Ansatz kann vereinfacht werden. Als Standardwerte können die in Tabelle 32 und Tabelle 33 gegeben Werte herangezogen werden.

$$q_{s,W} = \sum \! \! \left(f_{BW} \cdot \dot{q}_{SP} \cdot \frac{V_S}{A_{EB}} \right) \! \! \cdot \! t_y \, . \label{eq:qsw}$$

installiertes Speichervolumen V _S /A _{EB} , in [I/m ²]								
AEB, in [m²]	indirekt be- heizter Spei- cher	gasbeheizter Speicher und Elektrospeicher (Auf- heizung Tag und Nacht)	Elektrospeicher (Aufheizung nur nachts)	Elektro- Kleinspeicher	bivalenter Solarspeicher			
80160	1,51,9	1,01,3	2,22,7	0,1	3,03,5			
160400	1,21,5	0,81,0	1,62,2	0,1	2,53,0			
4002000	0,71,2	0,50,8	1,01,6	0,1	0,70,9			
2000 8000	05 07	03 05	07 10	0.1	05 07			

TABELLE 32 VOLUMEN FÜR TRINKWARMWASSERSPEICHER

Für die Speichervolumina ist eine Verwendung der realen Werte – sofern vorhanden – der Abschätzung mit Tabellenwerten vorzuziehen.

durchschnittliche Wärmeverlustleistung von Speichern , q _{SP} in [W/I]							
	Volumen, in [l]		e Speicher, bival sche Tag- und Na	al al deia ala	gach choiste		
Aufstellung		Dämmung gut (ca. 10cm)	Dämmung mäßig (bis 5cm)	Dämmung schlecht (bis 2cm)	elektrische Kleinspeicher	gasbeheizte Speicher	
	25	0,68	1,13	2,04	2,80	3,13	
	50	0,54	0,86	1,58	2,80	3,07	
außerhalb der	100	0,43	0,65	1,23	2,80	3,02	
wärmege-	200	0,34	0,49	0,95	2,80	2,96	
dämmten	500	0,25	0,34	0,68	2,80	2,89	
Hülle	1000	0,20	0,26	0,53	2,80	2,84	
	1500	0,18	0,22	0,46	2,80	2,81	
	2000	0,16	0,20	0,41	2,80	2,78	
	25	0,55	0,92	1,66	2,28	2,55	
	50	0,44	0,70	1,29	2,28	2,50	
innerhalb der	100	0,35	0,53	1,00	2,28	2,46	
wärmege-	200	0,28	0,40	0,78	2,28	2,41	
dämmten	500	0,21	0,28	0,56	2,28	2,35	
Hülle	1000	0,17	0,21	0,43	2,28	2,31	
	1500	0,14	0,18	0,37	2,28	2,28	
	2000	0,13	0,16	0,33	2,28	2,27	

TABELLE 33 WÄRMEABGABE FÜR TRINKWARMWASSERSPEICHER

Die mittlere Innentemperatur des Speichers über ein Jahr wird für einen Trinkwasserspeicher mit etwa $\vartheta_{\text{im,speicher}}$ =55...60°C angenommen. Die Umgebungstemperaturen innerhalb und außerhalb der wärmegedämmten Hülle werden mit 20°C bzw. 12°C angesetzt. Auch die Wärmeverluste der Speicherung sind, sofern sie innerhalb der gedämmten Gebäudehülle auftreten, der inneren Fremdwärmeleistung zuzurechnen. Dabei wird nur die Fremdwärme $q_{WG,s}$ berücksichtigt, die in der Heizzeit t_{HP} anfällt.

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [Energiepass], [BBR Zwischenbericht], [Energiepass], [VDI 2067 Bl. 4] und weitere eigene Untersuchungen von Bestandsgebäuden der Autoren.

BEISPIEL MFH:

Das Gebäude hat einen mäßig gedämmten, indirekt beheizten Trinkwasserspeicher, der im Keller aufgestellt ist. Das Volumen wurde nach Besichtigung auf 1000l geschätzt. Folgende Kennwerte wurden ermittelt:

V _S , in [I]	V _S /A _{EB} , in [I/m²]	f _{BW} , in [-]	q _{SP} , in [W/l]	$V_S / A_{EB} \cdot f_{BW} \cdot q_{SP}$, in [W/m²]	q _{s,W} , in [kWh/(m²a)]
1000	0,911	1,0	0,26	0,237	2,1

Damit ergibt sich ein Wärmeverlust der Trinkwarmwasserspeicherung von $q_{s,W}=2$ kWh/(m²a). Da der Speicher außerhalb der wärmegedämmten Hülle aufgestellt ist, kann kein Fremdwärmeanfall für die Heizung $q_{WG,s}$ gewertet werden.

1.3.4.5. Wärmeerzeugung

Allgemeine Aussagen zu den Verlusten der Wärmeerzeugung wurden bereits für die Heizung und Lüftung in Kapitel 1.3.3.4 gegeben. Diese sollen an dieser Stelle nicht noch einmal wiederholt werden. Im folgenden werden die in Tabelle 34 gegebenen Anhaltswerte für Erzeugungsaufwandszahlen e_g der Wärmeerzeuger für die Trinkwarmwasserbereitung näher erläutert.

Die Erzeugeraufwandszahl eines Wärmeerzeugers wird um so niedriger, je kleiner die Verluste bei der Wärmeerzeugung werden. Erzeugeraufwandszahlen sind schlechter (größer), wenn Wärmeerzeuger sehr geringe Auslastungen – durch Überdimensionierung oder geringe Nutzenabnahme – aufweisen.

Wärmeerzeuger		Aufwands- zahl e _g , in [-]	Hinweise
	nur Warmwasserbereitung	1,111,14	kompakte Ausführung mit Gehäuse
Nah- und Fern-	Thur Warriwasserbereitung	1,181,25	Ausführung ohne Gehäuse
wärme	Warmwasserbereitung und Hei-	1,031,06	kompakte Ausführung mit Gehäuse
	zung	1,041,13	Ausführung ohne Gehäuse
Elektrische Sy-	Speichergeräte	1,001,04	ohne Wärmeverlust des Speichers
steme	Durchlaufgeräte	1,001,01	
Elektrowärme-	Wasser-Wasser	0,220,33	
	Sole-Wasser	0,260,38	
pumpen	Luft-Wasser	0,320,45	
dezentrale Gasge-	Durchlaufgeräte mit el. Zündung	1,001,19	
räte	Durchlaufgeräte mit Zündflamme	1,356,24	
	Konstanttemperatur (detaillierter im Kapitel 1.3.3.4)	1,392,50	Kessel nur für WW-Bereitung
		1,301,55	Kessel für Heizung und Warmwasser-
	(detaillerter in Kapiter 1.3.3.4)		bereitung
Kessel	Niedertemperatur	1,111,21	bis 50 kW
1/62261	Medertemperatur	1,091,14	ab 50 kW
	Brennwert	1,101,17	bis 50 kW
	Dielliweit	1,081,13	ab 50 kW
	Kombigerät	1,151,41	
	Erdgas, Propan, Butan	0,590,65	bis 100 kW
BHKW		0,520,58	ab 100 kW
DITINA	Diesel	0,520,64	bis 100 kW
		0,450,48	ab 100 kW
Brennstoffbetrie-	Wasser-Wasser	0,550,60	
bene Wärmepum-	Sole-Wasser	0,580,65	
pen	Luft-Wasser	0,630,73	
regenerative Systeme	Solaranlagen, Wärmerückgewin- nungen	0,00	

TABELLE 34 ERZEUGERAUFWANDSZAHLEN FÜR DIE TRINKWARMWASSERBEREITUNG

Wird ein Gebäude von mehreren Wärmeerzeugern, zum Beispiel einer Kesselanlage mit solarer Unterstützung, versorgt (multivalente Anlage), so sind für jeden Erzeuger Deckungsanteile an der jährlichen Energieanforderung des Gebäudes für die Trinkwarmwasserbereitung zu bestimmen. Übliche Werte sind in Tabelle 35 wiedergegeben.

Deckungsanteile a, in [-]	Solaranlage	Grundlasterzeuger (Kessel, Wärmepumpe, Fernwärmeübergabestati- on,)	Spitzenlast (Elektroheizstab,)	Hinweise
	0,00	1,00	0,00	nur ein Erzeuger
	0,00	0,800,95	0,050,20	Erzeuger plus Elek- tronachheizung
Anlage ohne Sola- runterstützung	0,00	0,300,90	0,100,70	Wärmepumpe plus Kessel (alterna- tiver Betrieb)
	0,00	0,800,98	0,020,20	Wärmepumpe plus Kessel (paralleler Betrieb)
Anlage mit Solarun-	0,500,65	0,350,50	0,00	A _{EB} < 300 m ²
terstützung	0,450,60	0,400,50	0,00	A _{EB} 3001000 m ²
lerslutzung	0,300,50	0,500,70	0,00	$A_{EB} > 1000 \text{ m}^2$

TABELLE 35 DECKUNGSANTEILE FÜR DIE TRINKWARMWASSERBEREITUNG

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [DIN V 4701-10], [Energiepass], [VDI 2067 Bl. 2], [VDI 2067 Bl. 4], [LEG] und eigene Untersuchungen der Autoren sowie Herstellerangaben verschiedener Jahrgänge. Für die genauere Bestimmung von Deckungsanteilen und Wärmeerzeugeraufwandszahlen verweisen die Autoren an dieser Stelle auf diese Veröffentlichungen.

BEISPIEL MFH:

Das Mehrfamilienhaus wird allein von einem Niedertemperaturkessel versorgt. Der Deckungsanteil beträgt a=1,0. Der Kessel hat eine Leistung von 105 kW, die Erzeugeraufwandszahl wird zu $e_{g,w}$ = 1,12 abgeschätzt.

1.3.5. Analyse von Hilfsenergien

Für eine Bewertung der Anlagentechnik, z.B. für den energetischen Vergleich verschiedener alternativer Neubaumaßnahmen, muss auch der elektrische Hilfsenergiebedarf bilanziert werden.

Es werden alle Hilfsenergien bewertet, die unmittelbar mit der Versorgung eines Gebäudes mit Heizenergie und Nutzenergie der Warmwasserbereitung in Verbindung stehen. Dies sind die Hilfsenergien des Heizungssystems (Umwälzpumpe, Speicherladepumpe, Brenner, Regelung, Solarumwälzpumpe etc.), die Hilfsenergien der Warmwasserversorgung (Zirkulationspumpe, Speicherladepumpe, Solarkreispumpe, Regelung etc.) und die Hilfsenergien der kontrollierten Lüftung.

Der spezifische Energiebedarf der Elektrohilfsgeräte q_{El} kann aus den mittleren Leistungen aller elektrischer Verbraucher \dot{Q}_{El} und deren Laufzeiten t_{El} bestimmt werden. Der absolute Kennwert wird auf die Fläche A_{EB} bezogen:

$$q_{EI} = \frac{\Sigma \dot{Q}_{EI} \cdot t_{EI}}{A_{EB}} \, . \label{eq:qein}$$

Sind keine Leistungen und konkreten Laufzeiten bekannt, können Standardwerte aus Tabelle 36 entnommen werden und die Hilfsenergie anhand dieser Gleichung bilanziert werden:

$$\mathbf{q}_{\text{EI}} = \Sigma \dot{\mathbf{q}}_{\text{EI}} \cdot \mathbf{t}_{\text{EI}}$$
 .

Verbraucher		mittlere Leistung \dot{Q}_{EI} in [W/m²]		mittlere Laufzeit t _{EI} in [h/a]	
		0,10,4	AEB bis 250m²	8760	durchgehender Betrieb
gur	Zirkulationspumpe	0,00,1		7300 5840	Abschaltung 4h/d Abschaltung 8h/d
Wärmeverteilung			AEB ab 250m²	1200	Abschaltung 16h/d plus Wo- chenende
Närm		0,51,2	AEB bis 250m² mit Fuß- bodenheizung	60007000	Heizgrenze 15°C
	Heizungsumwälzpumpe	0,20,7	AEB bis 250m² mit Ra- diatorenheizung	50006000	Heizgrenze 12°C
		0,10,4	AEB ab 250m ²	40005000	Heizgrenze 10°C
ь ф	Ladepumpe Trinkwarm-	0,30,6	AEB bis 250m ²	200300	AEB bis 250m ²
speiche- rung	wasserspeicher	0,10,2	AEB ab 250m ²	300700	AEB ab 250m ²
e pe	Ladepumpe Heizungs-	0,20,5 0,00,1	AEB bis 250m ²	1500	_
. 0	pullerspeicher		AEB ab 250m ²		
	Hilfsantriebe und Rege- lung Trinkwarmwasser- Kessel	0,81,7	AEB bis 250m ²	200350	AEB bis 1000m ²
		0,10,6	AEB ab 250m ²	300450	AEB ab 1000m²
	Hilfsantriebe und Rege-	0,30,6	AEB bis 250m ²	14003000	AEB bis 1000m ²
ļ	lung Heizungs-Kessel	0,00,2	AEB ab 250m ²	25004500	AEB ab 1000m ²
ng	Hilfsantriebe Trinkwasser- Wärmepumpe	1,01,6 0,61,0	Wasser/Wasser-		
ngr			Wärmepumpe	400	
Zer			Sole/Wasser-	100	
e E			Wärmepumpe		
Wärmeerzeugung		1,01,6	Wasser/Wasser-		
/är	Hilfsantriebe Heizungs-	.,,.	Wärmepumpe	1600	
>	Wärmepumpe	0,61,0	Sole/Wasser- Wärmepumpe		
	Regelung Fernwärme	0,00,1	Heizung und Trinkwarm- wasser	8760	
	Pumpen und Regelung	0,20,4	AEB bis 500m ²	1000 1750	
	Solaranlage	0,10,3	AEB ab 500m ²	10001750	
	Ventilatoren zentrale Zu-	0,20,6	Luftwechsel bis 0,6 h-1		
ס	Abluftanlagen	0,61,6	Luftwechsel ab 0,6 h-1	60008760	
ù	Ventilatoren zentrale Ab-	0,10,5	Luftwechsel bis 0,6 h-1	6000 9700	
Lüftung	luftanlagen	0,51,1	Luftwechsel ab 0,6 h-1	60008760	
	Ventilatoren dezentrale Lüftungsanlagen	1,13,0		60008760	

TABELLE 36 HILFSENERGIEN

Die Daten dieses Kapitels stützen sich auf die folgenden Quellen: [Energiepass], [DIN V 4701-10] und eigene Untersuchungen der Autoren.

BEISPIEL MFH:

Über die Laufzeiten der elektrischen Hilfsverbraucher des MFH konnten bei der Vorort-Besichtigung keine genauen Daten ermittelt werden, die Leistungen wurden teilweise dokumentiert. Für das Standardjahr wird folgender spezifischer Energiebedarf für die elektrischen Antriebe nach Tabelle 36 bestimmt:

	Verbraucher	q _{EI} , in [W/m²]	t _{EI} , in [h/a]	q _{EI} · t _{EI} , in [Wh/m²a]
Haimuna	Umwälzpumpe 330 W	0,30	6000	1800
Heizung	Kessel	0,05	3500	175
Trinkwarmwas- serbereitung	Zirkulationspumpe 100 W	0,09	8000	720
	Ladepumpe Speicher 100 W	0,09	500	45
	Kessel	0,20	350	70

$$q_{EI} = \Sigma \dot{q}_{EI} \cdot t_{EI} = (1800 + 175 + 720 + 45 + 70) \frac{Wh}{m^2 a} = 2810 \frac{Wh}{m^2 a} = 3 \frac{kWh}{m^2 a}$$

1.3.5.1. Gesamtbilanz der Endenergien

Alle Einzelkennwerte der Energiebilanz sind aus den vorhergehenden Unterkapiteln bekannt. Sie müssen nun sinnvoll zusammengefasst werden. Die nachfolgenden Betrachtungen bauen dazu nach und nach eine durchgehende Bilanzgleichung auf.

Die spezifische Nutzwärme der Heizung und Lüftung q_h ist vergleichbar mit dem Jahresheizwärmebedarf nach EnEV 2002. Sie wird aus der Höhe der Transmissionswärmeverluste q_T und der Lüftungswärmeverluste q_V in der Heizzeit sowie der nutzbaren inneren und solaren Wärmegewinne bestimmt. Die nutzbaren Gewinne ergeben sich aus dem inneren und solaren Fremdwärmeanfall q_S und q_I und den Ausnutzungsgrad der Fremdwärme η .

$$q_h = [q_T + q_V - \eta \cdot (q_I + q_S)].$$

Für die Bewertung der Endenergie q_H des gesamten Heizungs- und Lüftungssystems spielen die Nutzwärme q_h , die Wärmeverluste der Verteilung $q_{d,H}$ und der Speicherung $q_{s,H}$, die Deckungsanteile der Wärmeerzeuger a sowie deren Aufwandszahlen $e_{g,H}$ eine Rolle. Der alternative Ansatz über die absoluten Wärmeverluste der Wärmeerzeugung ist ebenfalls denkbar, soll hier aber nicht weiter verfolgt werden.

$$\label{eq:qh} q_H = \left[q_h + q_{dH} + q_{s,H}\right] \cdot \Sigma (a \cdot e_{g,H}) \; .$$

Für die Endenergie der Trinkwarmwasserbereitung q_W sieht der Ansatz ähnlich aus. Auch hier werden Nutzwärme q_w , die Wärmeverluste der Verteilung $q_{d,W}$ und der Speicherung $q_{s,W}$ sowie die Deckungsanteile a und Aufwandszahlen $e_{g,W}$ der Wärmeerzeuger zusammengefasst.

$$\label{eq:qw} q_W = \left[q_w + q_{d,W} + q_{s,W}\right] \cdot \Sigma (a \cdot e_{g,W}) \,.$$

Die Endenergie aller Wärmeenergien q wird aus den Bestandteilen der Heizung und Lüftung q_H und der Trinkwarmwasserbereitung q_W zusammengesetzt.

$$q = q_H + q_W .$$

Der absolute Jahresendenergiebedarf Q für Heizung, Lüftung und Warmwasserbereitung wird aus der Bezugsfläche A_{EB} und dem spezifischen Kennwert q ermittelt.

$$Q = q \cdot A_{EB}$$
.

Alle diese Einzelgleichungen können, indem sie ineinander eingesetzt werden, in eine durchgehende Gesamtbilanzgleichung gebracht werden.

$$Q = A_{EB} \cdot \begin{bmatrix} \left(q_T + q_V - \eta \cdot q_I - \eta \cdot q_S + q_{d,H} + q_{s,H}\right) \cdot \Sigma(a \cdot e_{g,H}) \\ + \left(q_w + q_{d,W} + q_{s,W}\right) \cdot \Sigma(a \cdot e_{g,W}) \end{bmatrix}.$$

Diese Gleichung erscheint auf den ersten Blick sehr komplex. Da aber alle Einzelgrößen bekannt sind, ist der Ansatz sicher verständlich.

Die Endenergie der Wärme Q entspricht der Energiemenge, die für die Versorgung des Gebäudes in Form eines Energieträgers einzukaufen ist: Gas, Heizöl, Heizstrom, Fernwärme, o.a. Zusätzlich wird die Energiemenge Q_{El} an Strom für die elektrischen Hilfsantriebe bilanziert. Die absolute elektrische Endenergie Q_{El} kann analog aus dem flächenbezogenen Kennwert q_{El} bestimmt werden.

$$Q_{EI} = q_{EI} \cdot A_{EB}$$
.

BEISPIEL MFH:

Für das Mehrfamilienhaus wird die Endenergiebilanz nicht anhand der Gesamtgleichung sondern anhand der Einzelgleichungen nachvollzogen. Es ergeben sich im Standardjahr folgende Kennwerte.

spezifische Nutzwärme für die Heizung und Lüftung:

$$\begin{split} q_h &= \left[q_T + q_V - \eta \cdot (q_I + q_S) \right] = 185 \frac{kWh}{m^2 a} + 74 \frac{kWh}{m^2 a} - 0,843 \cdot \left(62 \frac{kWh}{m^2 a} + 20 \frac{kWh}{m^2 a} \right) \\ &= 190 \frac{kWh}{m^2 a} \end{split}$$

spezifische Endenergie für die Heizung und Lüftung (nur Wärmeenergien):

$$\begin{aligned} q_{H} &= \left[q_{h} + q_{d,H} + q_{s,H} \right] \cdot \Sigma (a \cdot e_{g,H}) = \left(190 \frac{\text{kWh}}{\text{m}^{2}\text{a}} + 41 \frac{\text{kWh}}{\text{m}^{2}\text{a}} + 0 \frac{\text{kWh}}{\text{m}^{2}\text{a}} \right) \cdot (1,0 \cdot 1,08) \\ &= 249 \frac{\text{kWh}}{\text{m}^{2}\text{a}} \end{aligned}$$

spezifische Endenergie für die Trinkwarmwasserbereitung (nur Wärmeenergien):

$$\begin{aligned} q_W &= \left[q_w + q_{d,W} + q_{s,W} \right] \cdot \Sigma (a \cdot e_{g,W}) = \left(18 \frac{kWh}{m^2 a} + 28 \frac{kWh}{m^2 a} + 2 \frac{kWh}{m^2 a} \right) \cdot (1,0 \cdot 1,12) \\ &= 54 \frac{kWh}{m^2 a} \end{aligned}$$

 spezifische Endenergie für die Heizung, Lüftung und Trinkwarmwasserbereitung (nur Wärmeenergien):

$$q = q_H + q_W = 249 \frac{kWh}{m^2 a} + 54 \frac{kWh}{m^2 a}$$

= 303 $\frac{kWh}{m^2 a}$

absoluter Wert für die Endenergie Wärme:

$$Q = q \cdot A_{EB} = 303 \frac{kWh}{m^2a} \cdot 1098m^2 = 332694 \frac{kWh}{a}$$

absoluter Endenergie der Hilfsenergien:

$$Q_{EI} = q_{EI} \cdot A_{EB} = 3 \frac{kWh}{m^2 a} \cdot 1098m^2 = 3294 \frac{kWh}{a}$$

Damit ist die Endenergiebilanz für das Gebäude abgeschlossen. Die Werte Q=333 MWh/a und Q_{EI} =3,3 MWh/a sind die Energiebedarfswerte für dieses Gebäude.

1.3.5.2. Primärenergiebilanz

Für eine ökologische Bewertung einer Modernisierungsmaßnahme oder auch eines Neubaus ist die Erstellung der Primärenergiebilanz sinnvoll. Der Hintergrund einer solchen Bilanz wurde bereits an anderer Stelle erläutert.

Die Energiemengen, die jeweils einem Energieträger zuzuordnen sind, müssen getrennt ausgewiesen werden. In der Primärenergiebilanz erfolgt die Bewertung anhand eines Primärenergiefaktors f_P analog zur Bewertung in der EnEV 2002. Eine Auswahl zeigt Tabelle 37. Die Primärenergiefaktoren sind auf den Heizwert H_U bezogen und dem Hessischen Energiepass [Energiepass] [Gemis] entnommen.

Endenergieträger	Primärenergiefaktor f _P	
	Heizöl EL	1,10
	Erdgas H	1,07
	Flüssiggas	1,06
Brennstoffe	Steinkohle	1,07
Diefilistolie	Braunkohle	1,20
	Brennholz	1,01
	Holzhackschnitzel	1,06
	Strommix	2,97
"Fernwärme"	70% KWK	0,71
Steinkohle-Kondensations-Kraftwerk = Anteil der Kraft-Wärme-	35% KWK	1,10
Kopplung (KWK) plus Heizöl-Spitzenlastkessel	0% KWK	1,49
"Nahwärme"	70% KWK	0,62
Erdgas-BHKW = Anteil der Kraft-Wärme-Kopplung (KWK) plus	35% KWK	1,03
Erdgas-Spitzenlastkessel	0% KWK	1,43
zurückgewonnene Wärme, Solare Wärme		0,00

TABELLE 37 PRIMÄRENERGIEFAKTOREN

Der Ansatz einer Primärenergiebilanz ähnelt dem der Endenergiebilanz. Die Grundlage sind die gleichen Energiekennwerte. Ohne noch einmal alle Einzelgrößen zu erläutern, lautet der Ansatz zu Berechnung der Primärenergie für das Heizungs- und Lüftungssystem q_{H.P.}:

$$q_{H,P} = \left[q_h + q_{dH} + q_{s,H}\right] \cdot \Sigma(a \cdot e_{g,H} \cdot f_P).$$

Für die Primärenergie der Trinkwarmwasserbereitung qw. P. sieht der Ansatz analog aus.

$$\label{eq:qwp} q_{W,P} = \left[q_w + q_{d,W} + q_{s,W}\right] \cdot \Sigma (a \cdot e_{g,W} \cdot f_P) \,.$$

Für die elektrischen Hilfsenergien wird der Primärenergiebedarf q_{El,P} mit Hilfe des Primärenergiefaktors für Strom bestimmt.

$$q_{\text{FIP}} = q_{\text{FI}} \cdot f_{\text{PFI}}$$
.

Die Primärenergie aller Energien q_P wird aus den Bestandteilen der Heizung und Lüftung $q_{H,P}$, der Trinkwarmwasserbereitung $q_{W,P}$ und der elektrischen Hilfsenergien $q_{EI,P}$ zusammengesetzt.

$$q_P = q_{HP} + q_{WP} + q_{EIP}.$$

Der absolute Jahresprimärenergiebedarf Q_P für Heizung, Lüftung, Warmwasserbereitung und elektrische Hilfsenergien wird aus der Bezugsfläche A_{EB} und dem spezifischen Kennwert q_P ermittelt.

$$Q_P = q_P \cdot A_{EB}$$
.

Auch diese Einzelgleichungen können, indem sie ineinander eingesetzt werden, in eine komplexe durchgehende Gesamtbilanzgleichung gebracht werden.

$$Q_P = A_{EB} \cdot \begin{bmatrix} \left(q_T + q_V - \eta \cdot q_I - \eta \cdot q_S + q_{d,H} + q_{s,H}\right) \cdot \Sigma(a \cdot e_{g,H} \cdot f_P) \\ + \left(q_w + q_{d,W} + q_{s,W}\right) \cdot \Sigma(a \cdot e_{g,W} \cdot f_P) + q_{EI} \cdot f_{P,EI} \end{bmatrix}.$$

BEISPIEL MFH:

Analog zur Endenergiebilanz für das Gebäude wird eine Primärenergiebilanz erstellt. Folgende Kennwerte ergeben sich:

spezifische Primärenergie für Heizung und Lüftung (nur Wärmeenergien):

$$\begin{aligned} q_{H,P} &= \left[q_h + q_{dH} + q_{s,H} \right] \cdot \Sigma (a \cdot e_{g,H} \cdot f_P) = \left(190 \frac{kWh}{m^2 a} + 41 \frac{kWh}{m^2 a} + 0 \frac{kWh}{m^2 a} \right) \cdot (1,0 \cdot 1,08 \cdot 1,07) \\ &= 267 \frac{kWh}{m^2 a} \end{aligned}$$

spezifische Primärenergie für die Trinkwarmwasserbereitung (nur Wärmeenergien):

$$\begin{aligned} q_{W,P} &= \left[q_w + q_{d,W} + q_{s,W} \right] \cdot \Sigma (a \cdot e_{g,W} \cdot f_P) = \left(18 \frac{kWh}{m^2 a} + 28 \frac{kWh}{m^2 a} + 2 \frac{kWh}{m^2 a} \right) \cdot (1,0 \cdot 1,12 \cdot 1,07) \\ &= 58 \frac{kWh}{m^2 a} \end{aligned}$$

spezifische Primärenergie für die Hilfsenergien:

$$q_{EI,P} = q_{EI} \cdot f_{P,EI} = 3 \frac{kWh}{m^2 a} \cdot 3,0 = 9 \frac{kWh}{m^2 a}$$

spezifische Primärenegie für das Gebäude (Wärme- und Hilfsenergien):

$$q_P \, = q_{H,P} \, + q_{W,P} \, + q_{EI,P} \, = 267 \, \frac{kWh}{m^2 a} + 58 \, \frac{kWh}{m^2 a} + 9 \, \frac{kWh}{m^2 a} = 334 \, \frac{kWh}{m^2 a}$$

absoluter Wert der Primärenergie für das Gebäude:

$$Q_P = q_P \cdot A_{EB} = 334 \frac{kWh}{m^2a} \cdot 1098m^2 = 366732 \frac{kWh}{a}$$

Das Ergebnis der Primärenergiebilanz $Q_P=367$ MWh/a bzw. $q_P=334$ kWh/(m^2a) wird in Vergleichsrechnungen, z.B. Modernisierungsrechnungen, als Referenzwert herangezogen.

Die komplette Rechnung findet sich durchgehend im Anhang 2.1.1.

1.3.6. Schema zur Berechnung

Den Rechenablauf für die energetische Bewertung von Gebäuden beschreibt ein Formblatt. In diesem ist auch die Reihenfolge der Ermittlung von Kennwerten so gewählt, dass eine durchgehende Bilanzierung entsteht.

Die in den Tabellen der Kapitel 1.3.1 bis 1.3.5 vorgestellten Energiekennwerte für Gebäude können verwendet werden, sofern keine genaueren Daten vorliegen. Zur Bestimmung einzelner Kenngrößen – zum Beispiel der Wärmedurchgangswerte für Außenbauteile U oder zur Bestimmung des Regelungseinflusses auf die mittlere Innentemperatur – können ggf. andere Berechnungsvorschriften (VDI 2067 BI.2, DIN V 4108 Teil 6, DIN V 4701 Teil 10 u.a.) herangezogen werden.

Das beschriebene Schema wird für die ausführliche Bewertung der Modernisierung des MFH angewendet, es befindet sich als Vordruck im Anhang 2.1.4.

1.4. Verbrauchswerte

Dieses Unterkapitel ist speziell dem Thema Energieanalyse eines bestehenden Gebäudes anhand von Verbrauchswerten (Brennstoffverbräuche, Warmwasserverbrauch) gewidmet.

BEISPIEL MFH:

Das Beispiel des MFH wird an dieser Stelle erweitert auf die Auswertung von Verbrauchswerten. Die Gasrechnung des Jahres 2000 gibt für das Gebäude einen Mengenverbrauch an Erdgas H von 32834 m³/a an. Die Wasserabrechnung weist einen Gesamtwasserverbrauch von 403m³/a aus. Weitere Abrechnungsdaten sind nicht vorhanden.

1.4.1. Umgang mit Verbrauchswerten

Jährliche Verbrauchswerte für den Energieverbrauch der Heizung und Warmwasserbereitung liegen üblicherweise für jedes bestehende Gebäude vor. Ist das Gebäude von einem Brennstoff (Gas, Öl, Holz, Kohle) versorgt, müssen vor der Energieanalyse die Brennstoffverbräuche – sofern dies nicht schon in der Abrechnung erfolgt ist – in einen Energiekennwert umgerechnet werden. Dies erfolgt anhand von spezifischen Energieinhalten für die Brennstoffe (vergleiche Kapitel 1.4.1).

Energieinhalte für verschiedene Brennstoffe können Tabelle 38 entnommen werden. Die tabellierten Werte sind Heizwerte H_U , da die Endenergie auf den Heizwert bezogen berechnet ist. Muss der Energieinhalt einer Brennstoffmenge auf den Brennwert H_O bezogen angegeben werden, dann sind Brennwerte anderen gängigen Nachschlagewerken zu entnehmen.

Brennstoff	Einheit	Heizwert H _U in kWh/Einheit
Braunkohle Briketts	kg	5,34
Steinkohle, Koks	kg	8,60
Heizöl EL	ĺ	10,00
Heizöl S	kg	11,40
Erdgas H	m³	10,40

TABELLE 38 HEIZWERTE HU VERSCHIEDENER BRENNSTOFFE

Die energetische Bilanz für ein Gebäude, dessen Verbrauchswerte ausgewertet und bewertet werden soll, kann anhand derselben Energiekennwerte (Verluste der Verteilung, Warmwassernutzwärme, etc.) erfolgen, die auch für die Bedarfsrechnung herangezogen werden.

Auch für die Datenrecherche im Vorfeld der energetischen Untersuchung anhand von Verbrauchswerten gilt der Grundsatz, dass die Aussagefähigkeit von Energiekennwerten steigt, wenn sie den realen Bedingungen entnommen sind – und nicht anhand von Standardwerten geschätzt werden müssen. So sollte aus Gründen der Genauigkeit neben dem Energieverbrauch für das gesamte Gebäude auch zumindest der Warmwasserverbrauch bekannt sein.

Beispiel MFH:

Zunächst wird der Brennstoffverbrauch in einer Energiemenge umgerechnet. Der Endenergieverbrauch für die Heizung und Warmwasserbereitung beträgt im Jahr 2000 (alle Werte für 2000 werden mit einem Stern "*" versehen.):

$$Q^{\star} = 31673 \frac{m^3}{a} \cdot 10,\! 40 \frac{kWh}{m^3} = 329400 \frac{kWh}{a} \, . \label{eq:Qphi}$$

Bezogen auf die beheizte Fläche A_{EB} =1098 m^2 ergibt sich ein spezifischer Energiekennwert für die Heizung und Warmwasserbereitung von:

$$q^* = \frac{Q^*}{A_{EB}} = \frac{329400 kWh / a}{1098 m^2} = 300 \frac{kWh}{m^2 a} \; . \label{eq:qpm}$$

1.4.2. Ablaufschema für die Bereinigung von Verbrauchswerten

Wenn die Verbrauchswerte für das entsprechende Jahr als Energiemengen in kWh/a vorliegen, kann die Energieanalyse, deren schematischer Ablauf nun dargestellt wird, beginnen. Zur Verdeutlichung sollte Bild 3 herangezogen werden.

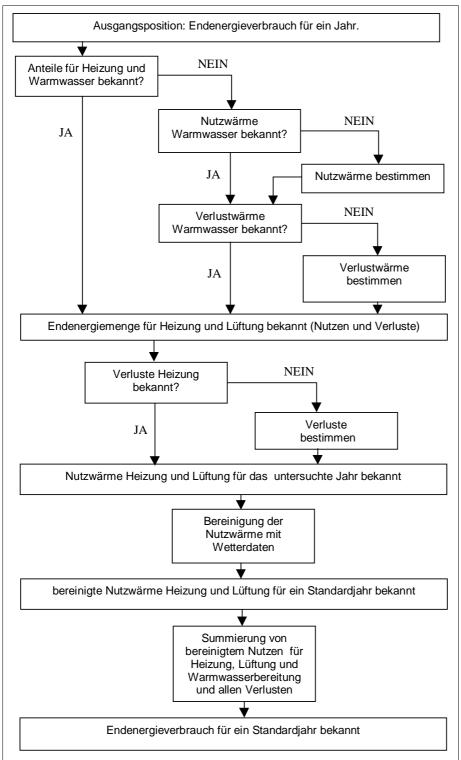


BILD 3 ABLAUFSCHEMA FÜR DIE ENERGIEANALYSE EINES BESTEHENDEN GEBÄUDES

Der gesamte Endenergiebedarf für Heizung und Trinkwarmwasserbereitung q* muss zunächst einmal auf die Bereiche "Heizung/Lüftung" und "Trinkwarmwasser" aufgeteilt werden. Falls keine Messwerte, zum Beispiel aus separaten Wärmemengenzählern für die Heizung oder die Warmwasserbereitung, vorliegen, wird zunächst der Warmwassernutzen qw bestimmt. Dazu wird – wenn möglich – immer die Wasserabrechnung herangezogen. Im Anschluss daran werden die Verluste der Warmwasserbereitung ermittelt. Dabei fließen die Ausführung und Regelungsstrategie des Warmwassersystems ein.

Ist die Jahresendenergie für Trinkwarmwasserbereitung q_W bekannt, kann auch die Jahresendenergie für Heizung und Lüftung q_H ermittelt werden. Diese Energiemenge umfasst sowohl Verluste des Heizund Lüftungssystems als auch den Nutzen, der zur Deckung der Wärmeverluste des Gebäudes not-

wendig ist. In der Regel müssen nun nacheinander zunächst alle technischen Verluste der Heizung und Lüftung bestimmt werden. Wie bei der Trinkwarmwasserbereitung fließen in diese Ermittlung sowohl die technische Ausstattung als auch Regelungsstrategien ein. Aus der Endenergie für das Heizungs- und Lüftunssystem q_H und den technischen Verlusten wird die Nutzenergie q_h bestimmt.

Dieser indirekt aus der Abrechnung ermittelte Nutzen für die Raumheizung q_h ($q_h=q_{H^-}q_{Verluste}$) sollte anschließend noch einmal auf Plausibilität überprüft werden. Dazu wird er noch einmal aus den Energiekennwerten für Transmission und Lüftung, solare und innere Gewinne gebildet ($q_h=q_T+q_V-q_{Gewinne}$). Stimmen beide Werte in etwa überein, kann die eigentliche witterungsbezogene Bereinigung erfolgen.

Ist dies nicht der Fall, sind offensichtlich Randdaten in der Analyse nicht so gewählt worden, dass sie die realen Gegebenheiten wiederspiegeln. Oft ermöglichen eine Variation der Innentemperatur ($\vartheta_i \pm 1...2^{\circ}$ C) oder des Luftwechsels (n \pm 0,1...0,3 h⁻¹) eine Anpassung der rechnerichen Bedarfswerte an die Verbrauchswerte. Für den Fall, dass die Heizgrenztemperatur eingangs falsch gewählt wurde, müsste die gesamte Bilanz wiederholt werden. Dies ist nur unter Verwendung von Software empfehlenswert. Hier zeigt sich auch der größte Unterschied einer Bedarfsrechnung zu einer Verbrauchsuntersuchung. Während bei der Bedarfsermittlung mittlere Innentemperaturen, Luftwechsel, Fremdwärmegewinne aus Personen und Geräten etc. Eingangsgrößen bei der Bilanzierung sind, stellen sie bei einer Verbrauchsanalyse Variablen dar.

Letztendlich sind alle Energieeinzelkennwerte bekannt. Die klimaabhängigen Komponenten werden nun anhand der Wetterdaten des Untersuchungszeitraumes auf das langjährige Mittel bereinigt. In erster Näherung ist dies die Nutzenergie der Heizung und Lüftung (q_h).

Alle Wärmeverluste der Heizung und Trinkwarmwasserbereitung sowie der Nutzen der Trinkwarmwasserbereitung werden zu diesem bereinigten Wert wieder hinzugezählt – ggf. wird die dabei die Länge der Heizzeit verändert. Der bereinigte Energiebedarf für das Gebäude ist bekannt.

In diesem Zusammenhang wurde die Vereinfachung getroffen, dass die technischen Verluste der Anlagentechnik (Wärmeverteilung, Wärmespeicherung, ...) unabhängig von den klimatischen Verhältnissen sind. Dies ist – physikalisch korrekt – nicht der Fall, kann aber in erster Näherung angenommen werden.

Anhand des hier beschriebenen Vorgehens wird auch das vorgestellte Beispielgebäude behandelt. Dabei wird das Vorgehen bei der Bestimmung der Kennwerte für die Trinkwarmwasserbereitung und Heizung nicht noch einmal vollkommen neu beschrieben. Die Berechnung erfolgt sehr knapp, nur mit den notwendigen Erläuterungen.

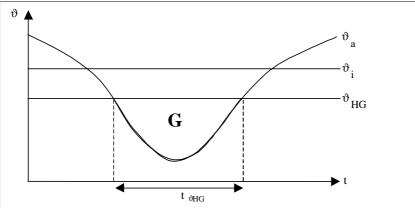
Da für das MFH eine Bereinigung der Verbrauchswerte des Jahres 2000 durchgeführt wird, werden die Jahresklimadaten dieses Jahres verwendet.

Bei einer angenommenen Heizgrenztemperatur von ϑ_{HG} =17°C ergibt sich mit den Wetterdaten des Standortes Wolfenbüttel für das Jahr 2000 eine Heizzeit von t_{HP} *=238d/a =6816h/a. Die mittlere Außentemperatur in diesem Zeitraum beträgt ϑ_{am} *=6,9°C.

Die Heizgrenztemperatur wurde (wie bei der Bedarfsrechnung) anhand der Baualtersklasse abgeschätzt. Der Stern (*) steht als Kennzeichnung für die Werte des Jahres 2001.

1.4.3. Grundlagen zur Klimabereinigung

Energieverbrauchswerte werden bereinigt, um den Einfluss des Klimas im Betrachtungszeitraum zu berücksichtigen. Der insgesamt geringere Energieverbrauch für ein warmes Betrachtungsjahr wird somit beispielsweise auf den langjährigen Mittelwert eines Referenzstandortes hochgerechnet.


Nach der Bereinigung sind Energieverbrauchswerte verschiedener Jahre und Standorte untereinander vergleichbar. Aus Gründen der Vergleichbarkeit empfiehlt es sich, alle zu untersuchenden Gebäude auf denselben Referenzort und ein Standardjahr zu normieren.

Es gibt verschiedene Möglichkeiten der Bereinigung, von denen zwei im folgenden vorgestellt werden.

1.4.3.1. Bereinigung mit Heizgradtagen

Zunächst soll kurz erläutert werden, was unter Heizgradtagen zu verstehen ist. Dabei dient das Bild 4

als Hilfe.

BILD 4 HEIZGRADTAGE

Heizgradtage G beschreiben die Summe aller Temperaturdifferenzen zwischen der Heizgrenztemperatur ϑ_{HG} und der Außentemperatur ϑ_a in einer Heizperiode t_{HP} . Im Bild 4 beschreibt die graue Fläche das Ergebnis dieses Ausdruckes. Da in der Regel die Außentemperatur für jeden Tag nicht verfügbar ist, wird der Mittelwert innerhalb der Heizperiode ϑ_{am} verwendet:

$$G = (\vartheta_{HG} - \vartheta_{am}) \cdot t_{HP}.$$

Die Heizgradtage G erhalten einen Index je nach gewählter Heizgrenztemperatur. Ist die Heizgrenztemperatur beispielsweise ϑ_{HG} =15°C für Gebäude im Bestand (Baujahr vor 1995), werden die Heizgradtage G₁₅ genannt.

Die Heizgradtage sind proportional zu der Energiemenge, die dem Gebäude als Nutzwärmemenge (von der Heizung z.B. über Heizkörper) unterhalb der Heizgrenztemperatur zuzuführen ist. Oberhalb der Heizgrenztemperatur werden die Verluste des Gebäudes allein von den Wärmegewinnen gedeckt. Die Bereinigung mit Heizgradtagen wird also immer dann angewendet, wenn für ein Gebäude die mittlere Nutzwärmemenge für die Heizung und Lüftung q_h bekannt ist.

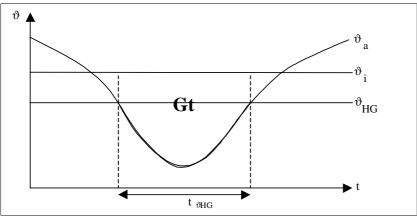
Die Bereinigung erfolgt anhand der folgenden Formel:

$$q_h' = q_h * \cdot \frac{G'}{G*}$$
.

Die mit dem Stern (*) gekennzeichneten Größen sind die Werte des untersuchten Jahres; die bereinigten Werte bzw. die Werte für das Standardjahr erhalten einen Apostroph (') zur Kennzeichnung.

BEISPIEL MFH:

Für das Jahr 2000 ergeben sich mit der geschätzten Heizgrenztemperatur ϑ_{HG} =17°C und den Wetterdaten (t_{HP} *=284d/a, ϑ_{am} *=6,9°C) folgende Heizgradtage:


$$G_{17}^* = (17 - 6.9)K \cdot 284d/a = 2868 \frac{Kd}{a}$$

Für das mittlere Jahr mit den klimatischen Randbedingungen, die in Kapitel 1.3.1.3 genannt wurden, betragen die Heizgradtage:

$$G_{17}' = (17 - 6.3)K \cdot 295d/a = 3157 \frac{Kd}{a}$$
.

1.4.3.2. Bereinigung mit Gradtagszahlen

Bild 5 dient zur Erklärung, was unter Gradtagszahlen zu verstehen ist und wann sie zur Anwendung kommen.

BILD 5 GRADTAGSZAHLEN

Die Gradtagszahlen Gt beschreiben die Summe aller Temperaturdifferenzen zwischen der Innentemperatur ϑ_i und der Außentemperatur ϑ_a im Verlauf einer Heizperiode t_{HP} . Im Bild 5 beschreibt die graue Fläche das Ergebnis dieses Ausdruckes.

Für die Innentemperatur und die Außentemperatur werden in der Regel die Mittelwerte innerhalb der Heizperiode verwendet:

$$\mathsf{Gt} = (\vartheta_{\mathsf{im}} - \vartheta_{\mathsf{am}}) \cdot \mathsf{t}_{\mathsf{HP}} \,.$$

Die Gradtagszahlen erhalten zwei Indices je nach Innentemperatur und gewählter Heizgrenztemperatur. Ist die Innentemperatur zum Beispiel ϑ_{im} =19°C und die Heizgrenztemperatur ϑ_{HG} =12°C, wird die Gradtagszahl Gt_{19,12} genannt.

Die Gradtagszahl Gt ist proportional zu der Energiemenge, die das Gebäude in der Heizzeit t_{HP} aufgrund von Wärmeverlusten (Transmission und Lüftung) verliert. Die Bereinigung mit Gradtagszahlen wird also immer dann angewendet, wenn für ein Gebäude die Wärmeverluste für Transmission und Lüftung (q_T+q_V) bekannt sind. Die Bereinigung erfolgt anhand der folgenden Formel:

$$(q_T + q_V)' = (q_T + q_V)^* \cdot \frac{Gt'}{Gt^*}$$

Die mit dem Stern (*) gekennzeichneten Größen sind die Werte des untersuchten Jahres; die bereinigten Werte bzw. die Werte für das Standardjahr erhalten einen Apostroph (') zur Kennzeichnung.

BEISPIEL MFH:

Für das Jahr 2000 ergibt sich mit der geschätzten Heizgrenztemperatur ϑ_{HG} =17°C, der mittleren Innentemperatur ϑ_{im} *=20°C und den Wetterdaten (t_{HP} *=284d/a, ϑ_{am} *=6,9°C) folgende Gradtagszahl:

$$Gt_{20,17}^* = (20 - 6,9)K \cdot 284d/a = 3720 \frac{Kd}{a}$$

Für das mittlere Jahr mit den klimatischen Randbedingungen, die in Kapitel 1.3.1.3 genannt wurden, und eine mittlere Innentemperatur von ϑ_{im} =20°C beträgt die Gradtagszahl:

$$Gt_{20,17}$$
'= (20 – 6,3)K · 284d/a = 3891 $\frac{Kd}{a}$.

1.4.4. Energiebilanz für das konkretes Untersuchungsjahr

Zunächst wird der Nutzwärmebedarf für die Heizung und Lüftung q_h für das untersuchte Abrechnungjahr 2001 aus dem Gesamtverbrauch bestimmt und auf Plausibilität überprüft.

BEISPIEL MFH:

Mit der Länge der Heizzeit des Jahres 2001 werden alle Energieeinzelkennwerte bestimmt. Das Vorgehen ist dabei so wie für das Standardjahr beschrieben. Die mit dem Stern (*) gekennzeichneten Werte gelten für das untersuchte Jahr 2000.

Als Trinkwarmwasserverbrauch wird der Wert aus der Abrechnung verwendet. Bei einer unterstellten Temperaturerhöhung des kalten Wasser von 10°C auf 55°C ergibt sich folgender Kennwert für die Trinkwarmwassernutzwärme:

$$q_w^{\ \ *} = \frac{\dot{V}_{Wasser} \cdot \rho c_P \cdot \Delta \vartheta}{A_{EB}} = \frac{403 m^3 / a \cdot 1{,}155 kWh / (m^3K) \cdot (55-10)K}{1098 m^2} = 19 \frac{kWh}{m^2 a} \; .$$

Die Verluste der Warmwasserverteilung und der Warmwasserspeicherung bleiben so, wie in der Bedarfsrechnung bestimmt, denn auch dort wurden bereits reale Leitungslängen und Dämmstandards in der Rechnung berücksichtigt. Auch die Wärmeerzeugeraufwandszahl bleibt erhalten:

```
q_{d,W}^*= 28 kWh/(m²a) (siehe Kapitel 1.3.4.3), 
 q_{s,W}^*= 2 kWh/(m²a) (siehe Kapitel 1.3.4.4) und 
 e_{a,W}^*= 1,12 (siehe Kapitel 1.3.4.5).
```

Der spezifische Endenergiebedarf für die Trinkwarmwasserbereitung beträgt:

$$q_{W} * = [q_{w} * + q_{d,W} * + q_{s,W} *] \cdot \Sigma(a \cdot e_{g,W} *)$$

$$= [19 + 28 + 2] \frac{kWh}{m^{2}a} \cdot (1,0 \cdot 1,12) = 55 \frac{k$$

Da der spezifische Endenergieverbrauch aus der Gasabrechnung bekannt ist, wird die Endenergie der Heizung und Lüftung bestimmt. Die Formel zur Berechnung der Endenergie Wärme wurde dazu umgestellt:

$$q_H^* = q^* - q_W^* = 300 \frac{kWh}{m^2a} - 55 \frac{kWh}{m^2a} = 245 \frac{kWh}{m^2a}$$
.

Die Verluste für das Heizsystem werden analog zu denen in der Bedarfsrechnung bestimmt. Berücksichtigt wird nur die veränderte Länge der Heizzeit von t_{HP}*=284d/a. Es ergeben sich:

```
\begin{array}{ll} q_{d,H}^{*}=39 \text{ kWh/(m}^2a) & \text{(vergleiche Kapitel 1.3.3.2),} \\ q_{s,H}^{*}=0 \text{ kWh/(m}^2a) & \text{(vergleiche Kapitel 1.3.3.3) und} \\ e_{g,H}^{*}=1,08 & \text{(siehe Kapitel 1.3.3.4).} \end{array}
```

Mit den Verluste des Heizsystems wird die Nutzwärme der Heizung und Lüftung q_h^* bestimmt. Die Formel zur Ermittlung der Endenergie der Heizung und Lüftung q_H wurde dazu nach q_h aufgelöst:

$$q_h^{\ *} = \frac{q_H^{\ *}}{\Sigma(a \cdot e_{q,H}^{\ *})} - q_{dH}^{\ *} + q_{s,H}^{\ *} = \frac{245 kWh \, / (m^2 a)}{(1,0 \cdot 1,08)} - 39 \frac{kWh}{m^2 a} - 0 \frac{kWh}{m^2 a} = 188 \frac{kWh}{m^2 a} \, .$$

Dieser Wert wird anhand der Wärmeverluste und -gewinne auf Plausibilität geprüft. Unter den gleichen Randbedingungen für die Innentemperatur (20°C) und den Luftwechsel (0,9 h⁻¹) wie in der Bedarfsrechnung ergeben sich:

```
q_T^* =170 kWh/(m²a) (vergleiche Kapitel 1.3.2.1) und q_V^* =68 kWh/(m²a) (vergleiche Kapitel 1.3.2.2).
```

Dabei ist die Heizzeit von t_{HP}^* =284 d/a und die mittleren Außentemperatur von ϑ_{am}^* =6,9°C berücksichtigt. Die solaren Wärmegewinne werden ebenso hoch angenommen wie in der Bedarfsrechnung, da die Länge der Heizperiode nur geringfügig kürzer ist:

```
q_S^* = 20 \text{ kWh/(m}^2\text{a}) (vergleiche Kapitel 1.3.2.3).
```

Die inneren Gewinne werden ebenso berechnet wie in der Bedarfsrechnung. Auch hier wird die Länge der Heizzeit von t_{HP}*=284 d/a berücksichtigt:

```
q_1^* = 59 \text{ kWh/(m}^2\text{a}) (vergleiche Kapitel 1.3.2.4).
```

Der Nutzungsgrad für die Fremdwärmegewinne η und schließlich die Nutzenergie für die Heizung und

Lüftung werden bestimmt:

$$\eta^* = 0.840$$
 (vergleiche Kapitel 1.3.2.5) und

$${q_h}^{\star} = 170 \frac{kWh}{m^2a} + 68 \frac{kWh}{m^2a} - 0,840 \cdot (59 \frac{kWh}{m^2a} + 20 \frac{kWh}{m^2a}) = 172 \frac{kWh}{m^2a} \,.$$

Die beiden Werte für die Nutzenergie – 188 kWh/(m²a) und 172 kWh/(m²a) – weichen um etwa 9% voneinander ab. Geht man zunächst davon aus, dass bei der Bewertung der Anlagentechnik keine großen Fehler gemacht wurden, dann können Gründe für die Abweichung auch in einem veränderten Nutzerverhalten gesucht werden. Eine Nutzenergie von 188 kWh/(m²a) kann beispielsweise erreicht werden, wenn eine höhere mittlere Innentemperatur von z.B. ϑ_{im} =21°C (statt 20°C) oder ein höherer Fremdwärmeanfall aus Personen und Geräten. Diese veränderten Randbedingen sind durchaus denkbar, beispielsweise wenn Nutzerdichte und Komfortverhalten vergleichsweise hoch in diesem Gebäude sind – wofür auch der erhöhte Warmwasserverbrauch spricht. Siehe Rechnung im Anhang 2.1.2.

Der aus der Verbrauchsabrechnung ermittelte Wert $q_h^*=188$ kWh/(m²a) wird als plausibel angesehen und bereinigt.

1.4.5. Energiebilanz für ein Standardjahr

Die aus der Energieanalyse für das Standardjahr gewonnenen Erkenntnisse werden nun auf ein Standardjahr übertragen. Die bereinigten Werte erhalten im folgenden einen Apostroph (') als Index, damit sie sich von den Werten des Jahres 2000 (*) unterscheiden.

Die Nutzwärme q_h als der wetterabhängige Anteil des Energieverbrauches wird mit den Heizgradtagen G_{17} (vergleiche Kapitel 1.4.3.1) bereinigt.

$$q_h^{\;\prime} = q_h^{\;\;*} \cdot \frac{G_{17}^{\;\;\prime}}{G_{17}^{\;\;*}} = 188 \, \frac{kWh}{m^2 a} \cdot \frac{3157 Kd/a}{2868 Kd/a} = 210 \, \frac{kWh}{m^2 a} \, .$$

Für das Standardjahr wird die Endenergiebilanz erstellt. Auch hier ist die Heizgrenztemperatur 17°C. Da es sich aber um ein standardisiertes Klima handeln soll, wird auch von den Normklimadaten ausgegangen (t_{HP} =295 d/a und ϑ_{am} =6,3°C).

Die Nutzwärmemenge für die Trinkwarmwasserbereitung orientiert sich an den Meßwerten von 2001, alle Verlustkennwerte für die Heizung, Lüftung und Trinkwarmwasserbereitung werden aus der Bedarfrechnung (Kapitel 1.3) übernommen.

Die wichtigsten Energiekennwerte des bereinigten Standardjahres sind:

spezifische Endenergie Wärme für Heizung / Lüftung:	$q_H = 273 \text{ kWh//(m}^2\text{a})$
spezifische Endenergie Wärme für Trinkwarmwasser:	$q_W = 55 \text{ kWh//(m}^2\text{a})$
spezifische Endenergie aller Wärmeenergien:	$q = 328 \text{ kWh//(m}^2\text{a})$
spezifische Endenergie aller Hilfsenergien:	$q_{EI} = 3 \text{ kWh//(m}^2\text{a})$
spezifische Primärenergie:	$q_P = 361 \text{ kWh//(m}^2\text{a})$

Die komplette Rechnung - anhand des Rechenblattes mit leicht veränderten Ergebnissen - findet sich durchgehend im Anhang 2.1.3.

2. Anhang

2.1. Beispiel MFH

2.1.1. Bedarfsberechnung

Allaganasias	Datan									
Allgemeine Nutzungstyp:	Daten			Doug	ltersklasse	· .	vor 77			
Bauweise:	mittelsch	wer .			tiges:	∃ .		nr 1974		
	d Kompakthei			00110	ugoo.		Daujai	11074		
A _{EB}	=	1098 m²		A_{H}		=		1940 m²		
h	=	2,5 m		A _{Fe}		=		199,9 m²		
Kompaktheit:					terflächen	anteil:		·		
A _H	A _{EB}		A _{EB}		A _{FE}			A _H		A _{FE} /A _H
	m² ÷ 1098 m) ² =	1,767		199,9 m ²	² ÷		1940 m ² =		0,103
-	emperaturen	0			0.0.00			005 1/-		0700 1-/-
$\vartheta_{HG} =$	f _{ABS}	C ϑ_{am}	f _{REG}	=	6,3 °C	, t _Y	=	365 d/a =		8760 h/a
ϑ _i 20 °C ×		97 ×	1,03 =	_	ϑ _{im} 20 °C	; t _{HP}	=	295 d/a =		7080 h/a
	er Verteilverlus					THE		200 4/4		1000 11/4
Ородиновно	. Vortonvonac	DN	L/A _{EB}			f _{B'}	•			
					AL			0.470.141/.0	_	0.470.14// 0.
	- (2 P	10-15 :	0,055 m/m ² m/m ²		$6 \text{ W/m} \times \text{W/m} \times \text{W/m}$		1,0 =	0,473 W/m ² W/m ²	_	0,473 W/m ² W/m ²
	ständig durchflossen		m/m²		W/m ×		=	W/m²	_	W/m²
in der ge-	durchiiosscri	:	m/m²		W/m ×			W/m²		W/m²
dämmten		10-15 :	0,182 m/m ²		4 W/m ×		1,0 =	0,619 W/m²	_	0,619 W/m²
Hülle	nicht ständig	:	m/m²		W/m ×		=	W/m²		W/m²
	durchflossen	:	m/m²		W/m ×		=	W/m²	=	W/m²
		:	m/m²	×	W/m ×		=	W/m²	=	W/m²
			1						Σ1=	1,092 W/m ²
		20-32 :	0,109 m/m ²		9 W/m ×		1,0 =	2,060 W/m ²		-
	ständig durchflossen	:	m/m²		W/m ×		=	W/m²	_	
außerhalb	durchiiossen	:	m/m² m/m²		W/m ×		=	W/m² W/m²		
der ge-			m/m²		W/m ×	_		W/m²	_	
dämmten	nicht ständig	•	m/m²		W/m ×			W/m²	_	
Hülle	durchflossen	:	m/m²		W/m ×		=	W/m²		
		:	m/m²	×	W/m ×		=	W/m²		
				,			Σ2=			
	der Verteilung:		_		dwärmear	nfall au		eilung:		_
$\Sigma 2$	$_{ imes}^{ ext{t}_{ ext{Y}}}$ × 8760 h/a $_{ imes}$	0.001-	Q _{d,W}		Σ1 2 M/m² ×	70	t _{HP}	× 0,001 =		q _{WG,d} 8 kWh/(m²a)
	er Speicherver						100 II/a	× 0,001 =		o kvvii/(iii-a)
Ородинасно	or Operational		TTITIKWATTI							
		V _S /A _{EB}	1/ 2	q _{SP}	f _{BW}			101/ 2		\A//2
Innerhalb der	gedämmten		I/m² ×	W/I W/I		=		W/m² : W/m² :	_	W/m² W/m²
hülle	l		1/111 X	V V / I	X			ψ Σ3	_	W/m²
		0,91	1 l/m² ×	0,26 W/I	×	1,0 =		0,237 W/m ²		
außerhalb der	gedämmten	-,-	I/m² ×	W/I		=		W/m²		
hülle						Σ	4=	0,237 W/m ²		
	der Speicherung				dwärmear	nfall au	ıs Spei	cherung:		
$\Sigma 4$	t _Y	0.004	Q _{s,W}		Σ3	7/	t _{HP}	0.004		Q _{WG,s}
0,237 W/m ²		,	2 kWh/(m²a)		0 W/m² ×			× 0,001 =	200	0 kWh/(m²a)
Deckungsa	nteile, Erzeug						en in		sse	
Erzeuger 1		a		e _{g,W} 1,12		a·e _{gW} 1	,12 ×	f _P 1,07	-	a⋅e _{gW} f _P 1,20
Erzeuger 2		1,	×	1,12	=	-	,12 X X	1,07	Ē	1,20
Erzeuger 3			×		=		×		Ė	
				Σ5	=	1	,12	Σ6	=	1,20
Spezifische	Endenergie \	Värme der	Trinkwarm	wasserb	ereitung					
q.		$q_{d,W}$		$q_{s,W}$			Σ5			q_W
(18 k	Wh/(m²a) +	28 kWh/(m²a) +	2 kWh	/(m²a)) ×	(1,12 =		54 kWh/(m²a)
q.		Q _{d,W}	m2a\ .	q _{s,W}	// > 20\		Σ6			Q _{W,P}
(18 k	Wh/(m²a) +	28 kWh/(m-a) +	2 kWh	(m - a)) ×			1,20 =		58 kWh/(m²a)

Spezifische	r Verteilverlus	st der H	leizu	ng u	nd Lüf	tun	ıg						
·		DN			A _{EB}		ά _L		f _{BH}				
		10-15	:	0,22	8 m/m²	×	13,9 W/m	×	1,0	=	3,169 W/m ²	=	3,169 W/m ²
	ständig		1:		m/m²	×	W/m			=	W/m²	=	W/m²
	durchflossen		:		m/m²	×	W/m	×		=	W/m²	=	W/m²
in der ge-			:		m/m²	×	W/m	×		=	W/m²	=	W/m²
dämmten		10-15	:	0,18	2 m/m ²	X	13,9 W/m	ı ×	0,5	=	1,265 W/m ²	_	1,265 W/m ²
Hülle	nicht ständig		:		m/m²	_	W/m			=	W/m²	_	W/m²
	durchflossen		:		m/m²	_	W/m			=	W/m²		W/m²
			:		m/m²	×	W/m	ı ×		=	W/m²	_	W/m²
	1	20-32	:	0.00	8 m/m²		5,9 W/m		10		↓	Σ7=	4,434 W/m ²
	ständig	20-32	:	0,22	m/m²	_	5,9 W/m		1,0	=	W/m ²	-	
	durchflossen		:		m/m²	_	W/m	_		_	W/m²	-	
außerhalb	daronnossen		-		m/m²	_	W/m	_		_	W/m²	-	
der ge-					m/m²	_	W/m	_		_	W/m²		
dämmten Hülle	nicht ständig		:		m/m²	_	W/m			=	W/m²		
nulle	durchflossen		:		m/m²	×	W/m	_		=	W/m²		
			:		m/m²	×	W/m	×		=	W/m²		
										E8=	5,779 W/m ²		
	der Verteilung:						Fremdwärm	eanf	all aus V	erte	ilung:		
Σ8	t _{HP}			q _{d,F}			Σ7		t _{HF}		=		q _{HG,d}
	7080 h/a × 0				n/(m²a)		4,43 W/m ²	×	708	0 h/	$\times 0,001 =$		31 kWh/(m²a)
Spezifische	r Speicherver	lust de	r Hei	zung									
		Vs	A _{EB}			qs	SP	f_{BH}					
Innorhalb dor	aodämmton			I/m²	×		W/I ×		=		W/m² =	=	W/m²
Innerhalb der (hülle	gedammen			I/m²	×		W/I ×		=		W/m² =	_	W/m²
Tidilo									_		<u>↓ Σ9</u>	=	W/m²
außerhalb der	gedämmten			I/m²	×		W/I ×		=		W/m²		
hülle	9			I/m²	X		W/I ×		=		W/m² W/m²		
Wärmoverlust	der Speicherung						Fremdwärm	oonf	$\Sigma 10 =$	noic			
Σ10	t _{HP}	•		q _{s,F}			Σ9	×	ali aus S t _{HF}	•	=		$q_{HG,s}$
W/m² ×	h/a ×0	.001 =			n/(m²a)		W/m²		***************************************		$a \times 0.001 =$		0 kWh/(m²a)
Deckungsa	nteile, Erzeug					d P	rimärenero	iefa	ktoren			üft	
J	, ,		a			e_{gH}			e _{aH}		f_P		a⋅e _{gH} ⋅f _P
Erzeuger 1			1,0) ×		9	1,08 =		1,08	X	1,07	=	1,16
Erzeuger 2				×			=			X		=	
Erzeuger 3				×			=			X		=	
							Σ11 =		1,08		Σ12	=	1,16
Spezifische	Wärmeverlus	ste der	Tran	smis	sion								
	U		A		f _{MIN}			mittle	erer U-W	ert:			
Wand	1,30 W/(m ² K)	× 7	32 m ²	2 ×	1,0 =	-	951,6 W/K		Σ14		Σ13		U _m
Kellerdecke/ Bodenplatte	0,70 W/(m ² K)	× 5	04 m ²	2 ×	0,5 =	=	176,4 W/K	2	2092 W/I	K	÷ 1940 m²	=	1,08 W/(m ² K)
Fenster	2,55 W/(m²K)	× 2	00 m ²	2 ×	1,0 =		510,0 W/K	Kom	paktheit:				
Dach/Decke	0,90 W/(m²K)		04 m ²		1,0 =	_	453,6 W/K		Σ13		A_{EB}		A_H/A_{EB}
	Σ13		40 m ²		Σ14 =		2092 W/K		1940 m	1 ² ÷		=	1,767
Wärmeverlust	durch Transmiss												
U _m	$artheta_{im}$	ť	am am		A	_H /A _E		t_{HP}					q⊤
1,08 W/(m ² K))×		1,	767 ×	7080	h/a	×	0,001 =		185 kWh/(m²a)
Spezifische	Wärmeverlus	ste der	Lüftu	ıng									
n _{nat}		l _{Anl}		n	Rest				/1.		Δn		n
0,61/h	ODER (durch Lüftung:	1/h	+		1/h) =	(J,6 1/	'h +		0,3 1/h	=	0,9 1/h
h	ourch Luitung: ρ·C _P	$\vartheta_{\sf im}$		$\vartheta_{\sf am}$			n		t_{HP}				q_V
2,5 m ×	0,34 ×(20 °C	-		°C)×		0,9 1/h ×			a ×	0,001 =		74 kWh/(m²a)
, ,	·- · · · · ·	-		-,-							-,		(🔾)

Spazifische	r solarer Fremdwär	maanfall								
Оредінзспе	G	ITEAITIAII	g			Α		r		
Süd		kWh/(m²a) ×		,76 ×	48	· 1,68 m²	×	0.36	=	12355 kWh/a
Ost		kWh/(m²a) ×		,76 ×		· 1,40 m²		0,36	i =	3016 kWh/a
Nord	210	kWh/(m²a) ×	0	,76 ×	36	· 1,68 m²	×	0,36	i =	3475 kWh/a
West	375	kWh/(m²a) ×	0	,76 ×	21	· 1,40 m²	: ×	0,36	=	3016 kWh/a
Dach	O	kWh/(m²a) ×		0 ×		0 m ²	×	0) =	0 kWh/a
			Σ	E15 =		200 m ²	!	Σ16	i =	21862 kWh/a
Σ16		Σ15		_m g _m r _m	Fe	nsterfläch	enante	eil:		
	3621 kWh/a ÷	200 m ² =	109,	3 kWh/m²a		Σ15	0	A _H		A _{Fe} /A _H
ODER:	~	-	0	a r		200 n	n² ÷	194	0 m²	= 0,103
G _m kWh/(m	2a) ×	r _m =	Gn	_n g _m r _m kWh/m²a						
Solarer Fremdy				KVVIIII G						
$G_{m'} g_{m'} r_{m}$	A _F	∍/A _H		A _H /	A _{EB}					q_S
109,3 kWh/(m	²a) ×	0,103 ×				1,76	7 =			20 kWh/(m ² a)
Spezifischer	r innerer Fremdwär	meanfall								
Trink	warmwasserbereitung		H	Heizung un	d Lüf	tung				
$q_{WG,d}$	q _{WG}		$q_{HG,d}$			$q_{HG,s}$	>			Σ17
		h/(m²a) +	31 kWł	n/(m²a) +		0 kWh	/(m²a)	=		39 kWh/(m²a)
Innerer Fremdy										
Σ17	q _i		t _{HP}							q _I
39 kWh/	,	2 W/m² ×	70)80 h/a ×	<	0,001	=			62 kWh/(m²a)
Fremdwärm	enutzungsgrad									
qı	qs		q⊤			q				γ
· _	(m²a) + 20 kWh/(m	n²a)) ÷ (1	85 kWł	h/(m²a) +		74 k	:Wh/(m	n²a)) =		0,317
Fremdwärmen	0 0									
f_{η}	0,90 × (1,0	- 0.2	×		γ	0,317	۱ –			η 0,843
Coorifical	-/	0,2	^			0,017	, —			0,040
	Nutzenergie der Ha	ii I bau pau s ie	ftuna							
•	Nutzenergie der He		ftung	Q.			O.			CI.
q _⊤	q _V	η		q _I 62 kWh/(n	n²a)		q _s) kWh/	(m²a)) -	+	q _h 190 kWh/(m²a)
q _T (185 kWh/	q _v (m²a) + 74 kWh/(m²a	η α) - 0,843	×(62 kWh/(n	n²a)			(m²a)) -	+	q _h 190 kWh/(m²a)
q _T (185 kWh/	q _v (m²a) + 74 kWh/(m²a Endenergie Wärme	η a) - 0,843 e der Heizung	×(62 kWh/(n .üftung	n²a)			(m²a)) -	+	
q _T (185 kWh/ Spezifische q _h	q _v (m²a) + 74 kWh/(m²a Endenergie Wärme	η α) - 0,843	×(und L	62 kWh/(n		+ 20) kWh/	(m²a)) -		190 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV	q _V (m²a) + 74 kWh/(m²a) Endenergie Wärme C (Vh/(m²a) + 41	η a) - 0,843 e der Heizung da.H kWh/(m²a) +	×(und L	62 kWh/(n üftung q _{s,H}) kWh/(m²a q _{s,H}))>	+ 20) kWh/			190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P}
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV	q _V (m²a) + 74 kWh/(m²a) Endenergie Wärme C Nh/(m²a) + 41 C Nh/(m²a) + 41	η a) - 0,843 e der Heizung da.H kWh/(m²a) +	×(und L	62 kWh/(n üftung q _{s,H}) kWh/(m²a))>	+ 20	Σ11			190 kWh/(m²a) q _H 249 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV	q _V (m²a) + 74 kWh/(m²a) Endenergie Wärme C (Vh/(m²a) + 41	η a) - 0,843 e der Heizung da.H kWh/(m²a) +	×(und L	62 kWh/(n üftung q _{s,H}) kWh/(m²a q _{s,H}))>	+ 20	Σ11	1,08 =		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P}
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV	q _V (m²a) + 74 kWh/(m²a) Endenergie Wärme Wh/(m²a) + 41 Wh/(m²a) + 41 Endenergie aller W q _H	η a) - 0,843 e der Heizung da.H kWh/(m²a) + da.H kWh/(m²a) + /ärmeenergier	×(und L	62 kWh/(n üftung q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a))>	+ 20	Σ11	1,08 =		190 kWh/(m²a) q _н 249 kWh/(m²a) q _{н,Р} 267 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische	q _V	η a) - 0,843 e der Heizung d _{d,H} kWh/(m²a) + d _{d,H} kWh/(m²a) + /ärmeenergier h/(m²a) +	×(und L	62 kWh/(n üftung q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a))>	+ 20	Σ11	1,08 =		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P}
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische	q _V (m²a) + 74 kWh/(m²a) Endenergie Wärme Wh/(m²a) + 41 Wh/(m²a) + 41 Endenergie aller W q _H	η a) - 0,843 e der Heizung IdaH kWh/(m²a) + IdaH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien	×(und L	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a 54 kW))>	+ 20	Σ11	1,08 =		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Mh/(m²a) + 41 (Mh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H	η a) - 0,843 e der Heizung IdaH kWh/(m²a) + IdaH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien ġ _{El}	× (und L c	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a 54 kW))>))> /h/(m	+ 20	Σ11	1,08 =		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Mh/(m²a) + 41 (Mh/(m²a)	η a) - 0,843 e der Heizung IdaH kWh/(m²a) + IdaH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien ġ _{El} 0,09 W/m²	× (und L c	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a 54 kW t _{EI} 8000 h/a)) >> /h/(m	+ 20 q _w q _w p ² a) = 0,001	Σ11	1,08 = 1,16 =	=	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Mh/(m²a) + 41 (Mh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe	η 0,843 e der Heizung da h kWh/(m²a) +	× (und L	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a 54 kW t _{EI} 8000 h/a 500 h/a))> /h/(m ×	+ 20 q _w 2 ² a) = 0,001 0,001	Σ11 Σ12	1,08 = 1,16 =	= =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Mh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1	η a) - 0,843 e der Heizung daH kWh/(m²a) + daH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien q c 0,09 W/m² 0,09 W/m² 0,20 W/m²	× (und L	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a 54 kW t _{EI} 8000 h/a 500 h/a 350 h/a)) >> /h/(m × ×	+ 20 q _w 2a) = 0,001 0,001 0,001 0,001	Σ11 Σ12 ×	1,08 = 1,16 = a	=	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm-	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2	η (0,843) e der Heizung (1,843) e der Heizung (1,843) e der Heizung (1,844) (× (und L	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kW t _{EI} 8000 h/a 500 h/a 350 h/a h/a)))))))) / h/(m	+ 20 q _w 2 ² a) = 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × ×	1,08 = 1,16 = a	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserberei-	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3	η	× (und L	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a 54 kW t _{EI} 8000 h/a 500 h/a 350 h/a h/a))))))))) / h/(m	+ 20 q _w 2a) = 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 ×	1,08 = 1,16 = a	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserberei-	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige	η	× (und L	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a) 0 kWh/(m²a) 1 kWh/(m²a) 54 kW t _{EI} 8000 h/a 500 h/a 350 h/a h/a h/a))))))))) / h/(m	+ 20 qw p ² a) = 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × ×	1,08 = 1,16 = a 1,0	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserberei-	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe	η	× (und L	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kWh t _{EI} 8000 h/a 350 h/a h/a h/a 6000 h/a)))))) //h/(m	+ 20 q _w 2a) = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × ×	1,08 = 1,16 = a 1,0	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserberei- tung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe	η a) - 0,843 e der Heizung ddH kWh/(m²a) + ddH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien	× (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a) q _{s.H} 0 kWh/(m²a) 54 kWh t _{EI} 8000 h/a 350 h/a h/a h/a 6000 h/a h/a)))))))))))))))))))	+ 20 qw 2a = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × ×	1,08 = 1,16 = a	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserbereitung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1	η a) - 0,843 e der Heizung dd.H kWh/(m²a) + dd.H kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien ġ _{El} 0,09 W/m² 0,09 W/m² W/m² W/m² W/m² W/m² 0,30 W/m² W/m² 0,30 W/m²	× (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kW t _{EI} 8000 h/a 500 h/a 350 h/a h/a h/a h/a 6000 h/a 3500 h/a)))))) / h/(m	+ 20 qw 2a) = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × ×	1,08 = 1,16 = a 1,0	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserberei- tung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe	η a) - 0,843 e der Heizung ddH kWh/(m²a) + ddH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien	× (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H} 0 kWh/(m²a) q _{s.H} 0 kWh/(m²a) 54 kWh t _{EI} 8000 h/a 350 h/a h/a h/a 6000 h/a h/a)))))))))))))))))))	+ 20 qw 2a = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × ×	1,08 = 1,16 = a 1,0	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserbereitung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2	η a) - 0,843 e der Heizung lddH kWh/(m²a) + lddH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien q 0,09 W/m² 0,09 W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m²	× (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kW t _{El} 8000 h/a 500 h/a 350 h/a h/a h/a 6000 h/a 3500 h/a h/a h/a h/a)))))))))))))))))))	+ 20 qw 2a) = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × × × ×	1,08 = 1,16 = a 1,0		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserbereitung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3	η a) - 0,843 e der Heizung ddH kWh/(m²a) + ddH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien	x (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kW t _{El} 8000 h/a 500 h/a 350 h/a h/a h/a 6000 h/a 3500 h/a h/a h/a h/a h/a h/a h/a)))))))))))))))))))	+ 20 qw 2a = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × × × × ×	1,08 = 1,16 = a 1,0	= = = = = = = = = = = = = = = = = = = =	190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserbereitung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme (Nh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator	η a) - 0,843 e der Heizung ddH kWh/(m²a) + ddH kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien	x (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kW t _{El} 8000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a)))))))))))))))))))	+ 20 qw 2a = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × × × × × ×	1,08 = 1,16 = a 1,0		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
q _T (185 kWh/ Spezifische q _h (190 kV q _h (190 kV Spezifische Spezifische Trinkwarm- wasserbereitung	q _V (m²a) + 74 kWh/(m²a Endenergie Wärme Wh/(m²a) + 41 Endenergie aller W q _H 249 kW Endenergie aller H Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 3 ventilator sonstige	η a) - 0,843 e der Heizung dd.H kWh/(m²a) + dd.H kWh/(m²a) + /ärmeenergier h/(m²a) + ilfsenergien ġ _{El} 0,09 W/m² 0,09 W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m²	x (und L c c c c c c c c c c c c c c c c c c	62 kWh/(n üftung q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) q _{s.H}) kWh/(m²a) 54 kW t _{El} 8000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a)))))))))))))))))))	+ 20 qw 2a = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	Σ11 Σ12 × × × × × × × × × ×	1,08 = 1,16 = a 1,0		190 kWh/(m²a) q _H 249 kWh/(m²a) q _{H,P} 267 kWh/(m²a) q 303 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)

Spe	ezifische Primärenergi	ie			
	$q_{H.P}$		$q_{W,P}$	$q_{El,P}$	q_P
	267 kWh/(m²a)	+	58 kWh/(m²a) +	0.1-\0/1-//2-\	= 334 kWh/(m²a)

2.1.2. Verbrauchsberechnung Jahr 2000

Flächen und Kompaktheit Ass = 1098 m²	Bauweise:	mittelsch		10119 0011		nes:	Ra	nuiah	r 1974		
ABB					3011311	ges.	Da	lujai	11974		
Name					Ан		=		1940 m²		
Rompakthetic		=					=				
1940 m² 1098 m² 1,767	Kompaktheit:					rflächena	nteil:		·		
Heizzeit, Temperaturen											
θyα = 1.7 °C θymm = 6,9 °C ty = 8760 h/a 8760 h/a 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			2 =	1,767		199,9 m²	÷	1	940 m ² =		0,103
10-15 10-1						0.000			005 1/		07001/
21.0 °C × 0.97 × 1.03	*11G		\mathcal{C} ϑ_{am}				t _Y :	=	365 d/a =		8760 h/a
DN			7 v				t		284 d/a =		6816 h/a
DN							HP ·		204 U/a =		001011/a
10-15 0,055 m/m² x 8,6 W/m x 1,0 = 0,473 W/m² = 0,	Ородинасти	or vertenverius					f				
Ständig									0.470 \\//2		0.470 \\/\/3
durchflossen		- (° P -	10-15 :				1,0		-		
Section Sect											
10-15 0,182 m/m² X 3,4 W/m X 1,0 = 0,619 W/m² = 0,619 W/m² = 0,619 W/m² w	in day an	duicillossen						_		_	
Hülle							1.0			_	
durchflossen		nicht ständig			•		1,0		,		
Second S								_			
Standig				m/m²				=			
Ständig									ψ Σ	E1=	1,092 W/m²
außerhalb der gedämmten hülle			20-32 :	•		W/m ×	1,0	=	2,060 W/m ²		
								=			
	außerhalh	durchflossen						_			
dämmten Hülle nicht ständig durchflossen : m/m² × W/m × = W/m² × W/m × = W/m² : m/m² × W/m × = W/m² : m/m² × W/m × = W/m² : m/m² × W/m × = W/m² : W/m² Wärmeverlust der Verteilung: Σ2 tγ 3,152 W/m² × 8760 h/a × 0,001 = 28 kWh/(m²a) Σ1 t _{HP} q _{WG,d} (8816 h/a × 0,001 = 7 kWh/(m²a) Spezifischer Speicherverlust für die Trinkwarmwasserbereitung Vs/A _{EB} q _{SP} f _{BW} Innerhalb der gedämmten hülle l/m² × W/l × = W/l × = W/m²											
Spezifischer Speicherverlust für die Trinkwarmwasserbereitung Spezifischer Speicherung Spezifischar Spe			•								
	Hülle							_			
Wärmeverlust der Verteilung:		durchilossen						_			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•	111/111	^	VV/III X					
Σ2	Wärmeverlust	der Verteilung:			Fremo	wärmean					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Σ2	t _Y		$q_{d,W}$	Σ	1	t _{HP}		3		q w _{G,d}
Ns/Aeb							6816	h/a	× 0,001 =		7 kWh/(m²a)
	Spezifische	er Speicherver	lust für die	Trinkwarm	wasserbe	reitung					
			V_S/A_{EB}		\dot{q}_{SP}	f_{BW}					
				I/m² ×	W/I	<	=		W/m² =		W/m²
		gedammten		I/m² ×	W/I	<	=		W/m² =	•	W/m²
außerhalb der gedämmten hülle	Tiulie								Σ3	=	W/m²
hülle $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	außerhalb der	r gedämmten	0,91			< 1	,0 =	(,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		goddininion		I/m² ×	W/I	<					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\\/:\	O:			Гилин						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				a				•	cherung:		Owe
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.001 =	2 kWh/(m²a)					× 0.001 =		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										ser	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Erzeuger 1							×		=	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						=				=	
$\begin{tabular}{c ccccc} Spezifische Endenergie W\u00e4rme der Trinkwarmwasserbereitung & & & & & & & & & & & & & & & & & & &$	Erzeuger 3			×		=		×		=	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1,12		Σ6	=	1,20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spezifische	e Endenergie V	Värme der	Trinkwarm	wasserbe	reitung					
q_{w} $q_{d,W}$ $q_{s,W}$ $\Sigma 6$ $q_{W,P}$								Σ5			
	'	, ,	•	m²a) +		m²a))×					, ,
$(19 \text{ kVVII/(III-a)} + 28 \text{ kVVII/(III-a)} + 2 \text{ kVVII/(III-a)}) \times 1,20 = 59 \text{ kVVII/(III-a)}$				m2a) :		m2o\ \		Σ6			
	(19 K	(vv1)/(III*a) +	∠o KVVN/(III-a) +	Z KVVN/(11-a))×			1,20 =		59 KWN/(m²a)

	r Verteilverlus	t der He	eizuna	und Lüf	ftund	3						
ородиносто	V G I G II G I I G	DN	J.Lulig	L/A _{EB}	· Gi i	ά _L		f _{BH}				
		10-15	: 0.2	228 m/m²	×	13,9 W/m	×	1,0	=	3,169 W/m ²	=	3,169 W/m ²
	ständig		: 0,.	m/m²		W/m		.,0	_	W/m²		W/m²
	durchflossen			m/m²	_	W/m	×		=	W/m²	_	W/m²
in der ge-				m/m²	-	W/m	×		=	W/m²	_	W/m²
dämmten		10-15	_	182 m/m²	_	13,9 W/m		0,5	_	1,265 W/m²	_	1,265 W/m²
Hülle	nicht ständig	10 10	: 0,	m/m²		W/m	×	0,0	=	W/m²	_	W/m²
	durchflossen			m/m²	_	W/m	×		_	W/m²	=	W/m²
				m/m²	_	W/m	_		=	W/m²	_	W/m²
			•	111/111		*******					Σ7=	4,434 W/m²
		20-32	. 0:	228 m/m²	×	5,9 W/m	×	1,0	=	1.345 W/m²		1, 10 1 11/111
	ständig	20 02	: 0,	m/m²	-	W/m	_	1,0	_	W/m²		
	durchflossen		:	m/m²		W/m	_		-	W/m²		
außerhalb	daronnoooon		:	m/m²	-	W/m	_		-	W/m²		
der ge-			:	m/m²		W/m	_			W/m²		
dämmten	nicht ständig		:	m/m²		W/m	_		-	W/m²		
Hülle	durchflossen		:	m/m²		W/m	_		_	W/m²		
	duicillosscii		:	m/m²	_	W/m	_		=	W/m²		
			•	111/111-	X	VV/III	×		= 28=			
Wärmeverlust	der Verteilung:					Fremdwärm	oanf:		_	,		
Vaimevenust Σ8	t _{HP}		,] d,H		Σ7	caril	an aus v t _{HF}		= =		$q_{HG,d}$
	6816 h/a × 0,	001 -		Wh/(m²a)		4.43 W/m²	V			$a \times 0.001 =$		30 kWh/(m²a)
	r Speicherver					1, 10 11/111	^	001	0 11,7	X 0,001 =		oo kwiii(iii a)
Оредінасне	i opelcherven			ıg	•							
		V _s /	/A _{EB}		q _{SI}		f _{BH}					
Innerhalb der g	aodämmton		I/m			W/I ×		=		W/m² =		W/m²
hülle	gedanimen		I/m	1 ² ×		W/I ×		=		W/m² =	=	W/m²
Tidilo										↓ Σ9	=	W/m²
außarhalb dar	andämmten		I/m	1 ² ×		W/I ×		=		W/m²		
außerhalb der hülle	gedammen		I/m	1 ² ×		W/I ×		=		W/m²		
								Σ10=		W/m²		
	der Speicherung:					Fremdwärm	eanfa	all aus S	peic	herung:		
Σ10	t _{HP}] s,H		Σ9	×	t _{HF}		_ =		$q_{HG,s}$
W/m² ×				Wh/(m²a)		W/m²				$a \times 0,001 =$		0 kWh/(m²a)
Deckungsa	nteile, Erzeug	eraufwa	andsza	hlen und	d Pr	imärenerg	iefa	ktoren	He	izung und L	₋üft	ung
		а			e_{gH}		a.	e _{gH}		f₽		a⋅e _{gH} ⋅f _P
Erzeuger 1			1,0 ×	(1,08 =		1,08	×	1,07	=	1,16
Erzeuger 2			×	(=			×		=	
Erzeuger 3			×	(=			×		=	
						Σ11 =		1,08		Σ12	=	1,16
Spezifische	Wärmeverlus	te der 🛚	Transm	nission								
	U		Ą	f _{MIN}			mittle	erer U-W	ert:			
Wand	1,30 W/(m ² K)	× 73	32 m ² ×		=	951,6 W/K		Σ14		Σ13		U_{m}
Kellerdecke/			04 m² ×			176,4 W/K	,	2092 W/I	K	÷ 1940 m²	=	1,08 W/(m ² K)
Bodenplatte	, , ,					· ·				. 10-10 111	_	1,00 777(111110)
Fenster			00 m ² ×				Kom	paktheit:		_		
Dach/Decke			04 m² ×			453,6 W/K		Σ13		A _{EB}		A _H /A _{EB}
	Σ13		40 m ²	Σ14 =	=	2092 W/K		1940 m	1 ² ÷	1098 m ²	=	1,767
	durch Transmissi			_								
U _m	ϑ_{im}	θ	am		H/AEB		t _{HP}			0.001		q _T
1,08 W/(m²K)			6,9 °C)		1,7	767 × 6	816	n/a	X	0,001 =		183 kWh/(m²a)
Spezifische	Wärmeverlus	te der l	_üftung									
n _{nat}		Anl		n _{Rest}						Δn		n
		1/h	+	1/h) =	0	,6 1/	h +		0,3 1/h	=	0,9 1/h
	durch Lüftung:											
h	$\rho \cdot c_P$	$\vartheta_{\sf im}$	n).	am		n		t_{HP}				q_{V}
2,5 m ×	0,34 × (21 °C -		,9 °C)×		0,9 1/h ×		0015.		0,001 =		74 kWh/(m2a)
Spezifische	Wärmeverlus n	te der L	_üftung	n _{Rest}) =			'h +			=	n

Spezifische											
	r solarer Frem										
0".1		G	- 2	g 0.70		40	A		r		40055 114/1-/-
Süd		560 kWh/(m²a	77	0,76			· 1,68 m²		0,36	_	12355 kWh/a
Ost		375 kWh/(m²a		0,76			· 1,40 m²		0,36		3016 kWh/a
Nord		210 kWh/(m²a	*	0,76			· 1,68 m²		0,36	_	3475 kWh/a
West		375 kWh/(m²a		0,76		21	· 1,40 m²		0,36	_	3016 kWh/a
Dach		0 kWh/(m²a	a) ×		×		0 m ²		0	_	0 kWh/a
				Σ15	=		200 m ²		Σ16	=	21862 kWh/a
Σ16		Σ15		G _m g _m		Fer	nsterfläch	enante	il:		
	3621 kWh/a ÷	200 m ²	=	109,3 kV	Vh/m²a		Σ15	_	A _H		A_{Fe}/A_{H}
ODER:							200 n	n² ÷	1940) m²	= 0,103
G _m	g _m	r _m		G _m g _m							
kWh/(m		X	=	KV	Vh/m²a						
Solarer Fremd	warmeanfall:	Δ /Δ			۸ / ۸						_
$G_{m} \cdot g_{m} \cdot r_{m}$	2-1	A _{Fe} /A _H	400		A _H /A	₹EB	4 70	-			qs
109,3 kWh/(m			103 ×				1,76	/ =			20 kWh/(m²a)
Spezifische	r innerer Frem	idwärmeanfal									
Trink	warmwasserberei	tung		Heiz	ung und	Lüft	tung				
$q_{WG,d}$		$q_{WG,s}$		$q_{HG,d}$			$q_{HG,s}$				Σ17
	h/(m²a) +	0 kWh/(m²a)	+ 3	30 kWh/(m	² a) +		0 kWh	/(m²a)	=		37 kWh/(m²a)
Innerer Fremd	värmeanfall:										
Σ17		q _i		t_{HP}							q_{l}
37 kWh/	(m²a) +	3,5 W/m ² >	<	6816	h/a ×		0,001	=			62 kWh/(m²a)
	enutzungsgra			0010	11/u /	•	0,001				02 KVVII/(III a)
	enutzungsgra										
q _I	(2-) . 00.1	qs	41	QT	2-1		q		2-1 1		γ 0.246
		<wh (<="" (m²a)="")="" td="" ÷=""><td>18</td><td>83 kWh/(m</td><td>²a) +</td><td></td><td>/4 K</td><td>:Wh/(m</td><td>²a))=</td><td></td><td>0,319</td></wh>	18	83 kWh/(m	² a) +		/4 K	:Wh/(m	²a))=		0,319
Fremdwärmen	0 0										
tη		1.0	0.0			γ	0.240				η
O	0,90 × (1,0 -	0,2	×			0,319) =			0,843
Spezifische	Nutzenergie o	der Heizung u	na Lur	tung							
q _T		q _V	η		q _I	۰,	-	qs			q _h
	(m²a) + 74 kW		0,843 ×		kWh/(m	² a)	+ 20) kWh/(m²a)) +	-	188 kWh/(m²a)
Spezifische	Endenergie V	Värme der He	izung	und Lüfti	ung						
q _h		$q_{d,H}$		$q_{s,H}$				Σ11			q_H
(188 k\	Nh/(m²a) +	39 kWh/(m²a) +	0 kV	/h/(m²a)) ×			1,08 =		245 kWh/(m²a)
q _h		$q_{d,H}$		$q_{s,H}$				Σ12			$q_{H,P}$
(188 k\	<i>N</i> h/(m²a) +	39 kWh/(m²a) +	0 kV	/h/(m²a)) ×			1,16 =		263 kWh/(m²a)
Spezifische	Endenergie a	ller Wärmeen	ergien								
•	q _H						q _W				q
	2	245 kWh/(m²a)	+		55 kWł	n/(m∙	²a) =				300 kWh/(m ² a)
Spezifische	Endenergie a				55 KVVI	n/(m	²a) =				300 kWh/(m²a)
Spezifische		ller Hilfsenerg	gien			n/(m	²a) = _		а		
Spezifische	Endenergie a	ller Hilfsenerg	gien l⊨		t _{EI}				а		q _{EI}
Spezifische	Endenergie a	ller Hilfsenerg 0,0	gien d _{EI} 9 W/m²	× 80	t _{El} 000 h/a	×	0,001		:		q _{EI} 0,720 kWh/(m²a)
•	Zirkulation Speicherladepur	ller Hilfsenerg 0,0 mpe 0,0	gien Hei 19 W/m² 19 W/m²	× 80 × !	t _{EI} 000 h/a 500 h/a	×	0,001		:	-	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a)
Trinkwarm-	Zirkulation Speicherladepur Erzeuger 1	ller Hilfsenerg 0,0 mpe 0,0	gien dei 19 W/m² 19 W/m² 10 W/m²	× 80 × 5	t _{EI} 000 h/a 500 h/a 350 h/a	× ×	0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a)
Spezifische Trinkwarm- wasserberei- tung	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2	ller Hilfsenerg 0,0 mpe 0,0	gien 9 W/m² 9 W/m² 0 W/m² W/m²	× 80 × 9 × 3	t _{EI} 000 h/a 500 h/a 850 h/a h/a	× × ×	0,001 0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei-	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3	ller Hilfsenerg 0,0 mpe 0,0	gien dei 9 W/m² 9 W/m² 0 W/m² W/m² W/m²	× 80 × ! × : × :	t _{Ei} 000 h/a 500 h/a 850 h/a h/a h/a	× × × ×	0,001 0,001 0,001 0,001 0,001		1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei-	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige	Iller Hilfsenerg	gien Mei 19 W/m² 19 W/m² 10 W/m² W/m² W/m² W/m²	× 80 × 5 × 7 × 7 × 8	t _{EI} 000 h/a 500 h/a 500 h/a h/a h/a h/a h/a	× × × ×	0,001 0,001 0,001 0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei-	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe	Iller Hilfsenerg	gien dei 9 W/m² 9 W/m² 9 W/m² W/m² W/m² W/m² W/m² 0 W/m²	× 80 × 5 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7	t _{EI} 000 h/a 500 h/a 500 h/a h/a h/a h/a h/a 000 h/a	× × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei-	Zirkulation Speicherladepur Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepur	Iller Hilfsenerg	9 W/m² 9 W/m² 9 W/m² W/m² W/m² W/m² W/m² W/m² W/m²	× 80 × 9 × 3 ×	t _{EI} 000 h/a 500 h/a 500 h/a h/a h/a h/a h/a 000 h/a	× × × × ×	0,001 0,001 0,001 0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei- tung	Zirkulation Speicherladepur Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepur Erzeuger 1	Iller Hilfsenerg	9 W/m ² 9 W/m ² 9 W/m ²	× 80 × 3 × 5 × 7 × 80 × 80 × 80 × 80 × 80	t _{EI} 000 h/a 500 h/a 500 h/a h/a h/a h/a h/a 000 h/a	× × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei- tung Heizung und	Zirkulation Speicherladepur Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepur	Iller Hilfsenerg	9 W/m² 9 W/m² 9 W/m² W/m² W/m² W/m² W/m² W/m² W/m²	× 80 × 3 × 5 × 7 × 80 × 80 × 80 × 80 × 80	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a 600 h/a	× × × × × × × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001	×	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 0,175 kWh/(m²a)
Trinkwarm- wasserberei- tung Heizung und	Zirkulation Speicherladepur Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepur Erzeuger 1	Iller Hilfsenerg	9 W/m ² 9 W/m ² 9 W/m ²	× 80 × 5 × 7 × 80 × 80 × 80 × 80 × 80 × 80 × 80 × 80	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a	× × × × × × × × × × × × × × × × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	×	1,0	= = = = = = = = = = = = = = = = = = =	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 0,175 kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei- tung Heizung und	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladeput Erzeuger 1 Erzeuger 2	Iller Hilfsenerg	pien AEI 9 W/m² 9 W/m² 9 W/m² 0 W/m² W/m² W/m² W/m² W/m² 5 W/m² W/m²	× 80 × 5 × 7 × 80 × 80 × 80 × 80 × 80 × 80 × 80 × 80	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a	× × × × × × × × × × × × × × × × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	X X X	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 0,175 kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei- tung Heizung und	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3	Iller Hilfsenerg	gien Bei W/m²	× 80 × 9 × 1 ×	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a 600 h/a h/a h/a	× × × × × × × × × × × × × × × × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	× × × × ×	1,0	= = = = = = = = = = = = = = = = = = = =	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 0,175 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Trinkwarm- wasserberei- tung	Zirkulation Speicherladepur Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepur Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige	Iller Hilfsenerg 0,0	gien AEI 9 W/m² 9 W/m² 9 W/m² 0 W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m²	× 80 × 9 × 1 ×	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a	× × × × × × × × × × × × × × × × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	X X X X	1,0	=	q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a)
Trinkwarm- wasserberei- tung Heizung und	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladeput Erzeuger 1 Erzeuger 3 Ventilator sonstige Endenergie der	iller Hilfsenerg	gien AEI 9 W/m² 9 W/m² 9 W/m² 0 W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m²	× 80 × 9 × 1 ×	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a	× × × × × × × × × × × × × × × × × × ×	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	× × × × × q	1,0		q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a)
Trinkwarm- wasserberei- tung Heizung und	Zirkulation Speicherladeput Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladeput Erzeuger 1 Erzeuger 3 Ventilator sonstige Endenergie der	Iller Hilfsenerg 0,0	gien AEI 9 W/m² 9 W/m² 9 W/m² 0 W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m²	× 80 × 9 × 1 ×	t _{EI} 000 h/a 500 h/a 350 h/a h/a h/a h/a h/a h/a h/a h/a	X	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	× × × × × q ×	1,0	= = = = = = = = = = = = = = = = = = = =	300 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) 1,800 kWh/(m²a) kWh/(m²a)

Spe	ezifische Primärenerg	ie			
	$q_{H.P}$		$q_{W.P}$	$q_{EI,P}$	q_{P}
	263 kWh/(m ² a)	+	59 kWh/(m²a) +	O I-\A/I- // 2-\	= 331 kWh/(m²a)

2.1.3. Verbrauchsberechnung bereinigtes Standardjahr

Bauweise:	mittelsch		iang bor		tiges:			nr 1974		
	nd Kompakthei			00115	gco.		aujai	1017		
A _{EB}	=	1098 m²		A_H		=		1940 m²		
h	=	2,5 m		A _{Fe}		= _		199,9 m²		
Kompaktheit:				Fens	terflächena	anteil:		·		
A _H	A _{EB}		A _{EB}		A _{FE}			\ _H		A _{FE} /A _H
	m² ÷ 1098 m	1 ² =	1,767		199,9 m ²	÷	1	940 m ² =		0,103
	emperaturen	0			0.0.00			005 1/-		07001/-
$\vartheta_{HG} =$	17 °	C ϑ_{am}		=	6,3 °C	t _Y	=	365 d/a =		8760 h/a
ϑ _i 21,0 °C ×	f _{ABS}	07 ×	f _{REG} 1,03 =		ϑ _{im} 21 °C	t _{HP}	=	284 d/a =		7080 h/a
	er Verteilverlus					HP		204 4/4		7000 11/4
Ородиности	or vortonvortae	DN	L/A _{EB}		il il	f_{BW}				
								0.470 \\//2		0.470 \\\/3
	atë a di a	10-15 :	0,055 m/m ² m/m ²		$\frac{6 \text{ W/m}}{\text{W/m}} \times$	1,0	=	0,473 W/m ² W/m ²		0,473 W/m ² W/m ²
	ständig durchflossen	•	m/m²		W/m ×			W/m²		W/m²
in der ge-	adioillosseii	:	m/m²		W/m ×			W/m²	_	W/m²
dämmten		10-15 :	0,182 m/m²		4 W/m ×	1,0		0,619 W/m²	_	0,619 W/m²
Hülle	nicht ständig	:	m/m²		W/m ×	1,0		W/m²		W/m²
	durchflossen	:	m/m²		W/m ×		=	W/m²	_	W/m²
		:	m/m²		W/m ×		=	W/m²	=	W/m²
								1 2	Σ1=	1,092 W/m²
		20-32 :	0,109 m/m ²		9 W/m ×	1,0	=	2,060 W/m ²		
	ständig	:	m/m²		W/m ×		=	W/m²		
außerhalb	durchflossen	:	m/m²		W/m ×		=	W/m²		
der ge-		:	m/m²		W/m ×		=	W/m²		
dämmten			m/m²		W/m ×		=	W/m²	_	
Hülle	nicht ständig	:	m/m²		W/m ×		=	W/m²		
	durchflossen	:	m/m² m/m²		W/m ×		=	W/m² W/m²		
		•	111/111-	×	W/m ×		 Σ2=		-	
Wärmeverlus	t der Verteilung:			Frem	dwärmear					
Σ2	t _Y		$q_{d,W}$		Σ1	t _{HF}		g.		q w _{G,d}
3,152 W/m ²	imes 8760 h/a $ imes$	0,001=	28 kWh/(m²a)	1,09	$2 \text{ W/m}^2 \times$	7080	h/a	× 0,001 =		8 kWh/(m²a)
Spezifische	er Speicherver	lust für die	Trinkwarm	wasserb	ereitung					
		V_S/A_{EB}		q_{SP}	f_{BW}	,				
			I/m² ×	W/I	×	=		W/m² =	=	W/m²
Innerhalb der hülle	gedämmten		I/m² ×	W/I		=		W/m² =	=	W/m²
Tiulie								↓ Σ3	=	W/m²
außerhalb de	r gedämmten	0,91	1 l/m² ×	0,26 W/I	×	1,0 =	(0,237 W/m ²		
hülle	goddinniton		I/m² ×	W/I	×	=		W/m²		
					.1			0,237 W/m ²		
vvarmeverius Σ4	t der Speicherung: t _v		a		dwärmear Σ3	itali aus ; t _{HF}	•	cnerung:		Q
0,237 W/m ²		0.001 =	q _{s,W} 2 kWh/(m²a)		23 W/m 2 $ imes$			× 0,001 =		q _{WG,s} 0 kWh/(m ² a)
	anteile, Erzeug								sser	
		a		a i iiiiiai ∋ _{g,W}		ı∙e _{aW}		f _P		a·e _{aW} f _P
Erzeuger 1			0 ×	1,12		1,12	×	1,07	=	1,20
Erzeuger 2			×		=	·····	×	,	=	,
Erzeuger 3			×		=		×		=	
		·			=	1,12		Σ6	=	1,20
Spezifische	e Endenergie V	Värme der	Trinkwarm	wasserb	ereitung					
	lw	$q_{d,W}$		$q_{s,W}$			Σ5			q_W
(191	kWh/(m²a) +	28 kWh/(m²a) +	2 kWh	′(m²a))×			1,12 =		55 kWh/(m²a)
	lw (q _{d,W}	2)	q _{s,W}	<i>''</i> 0 ` `		Σ6			q _{W,P}
(191	kWh/(m²a) +	28 kWh/(m²a) +	2 kWh	(m^2a)) \times			1,20 =		59 kWh/(m²a)

Spezifische	r Verteilverlus	t der H	eizur	na una	Lüf	tun	a						
ородиносто	V SITSIII GIIGG	DN	0.24.	L/A _E			q _L		f _{BH}				
		10-15	:	0,228 r		×	13,9 W/m	×	1,0	=	3,169 W/m ²	=	3,169 W/m ²
	ständig				n/m²		W/m		.,0	=	W/m²		W/m²
	durchflossen				n/m²		W/m	_		=	W/m²	_	W/m²
in der ge-			:		n/m²	_	W/m			=	W/m²	_	W/m²
dämmten		10-15	_	0,182 r		_	13,9 W/m		0,5	=	1,265 W/m²	_	1,265 W/m²
Hülle	nicht ständig	10 10	:		n/m²	_	W/m	_	0,0	=	W/m²		W/m²
	durchflossen				n/m²		W/m	_	_	=	W/m²	_	W/m²
					n/m²	_	W/m			=	W/m²		W/m²
			•	•	,		***************************************					Σ7=	4,434 W/m²
		20-32		0,228 r	n/m²	×	5,9 W/m	×	1,0	=	1.345 W/m²		1, 10 1 11/111
	ständig	20 02			n/m²	_	W/m		1,0	=	W/m²		
	durchflossen				n/m²		W/m			_	W/m²		
außerhalb	daronnoocon				n/m²	_	W/m	_		_	W/m²	-	
der ge-			:		n/m²	_	W/m			=	W/m²	-	
dämmten	nicht ständig		:		n/m²		W/m			=	W/m²	1	
Hülle	durchflossen		:		n/m²		W/m		_	=	W/m²	-	
	duroniiosscri				n/m²		W/m			_	W/m²	-	
			•	ı	11/111-	X	VV/III	X		= E8=		-	
Wärmeverlust	der Verteilung:						Fremdwärm	panf					
VVaimevenusi Σ8	t _{HP}			$q_{d,H}$			riemuwami Σ7	caril	an aus v t _{HF}		= =		$q_{HG,d}$
	7080 h/a × 0,	001 -	4	9a,∺ 1 kWh/(m²a)		4.43 W/m²	. v			$a \times 0.001 =$		31 kWh/(m²a)
	r Speicherver				π ω,		1, 10 11/11/	^	100	0 11,	× 0,001 =		or kwii/(iii a)
Spezilische	i opelcherver			zung				_					
		Vs	/A _{EB}			q_s		f _{BH}					
Innorhalb dar (radämmtan			$I/m^2 \times$			W/I ×		=		W/m² =		W/m²
Innerhalb der of hülle	gedammen			$I/m^2 \times$			W/I ×		=		W/m ² =	=	W/m²
Tiulie											↓ Σ9	=	W/m²
out orbolb de-	andämmten			I/m² ×			W/I ×		=		W/m²		
außerhalb der hülle	gedammen			I/m² ×			W/I ×		=		W/m²		
Tiulie									Σ10=		W/m²		
Wärmeverlust	der Speicherung:						Fremdwärm	eanf	all aus S	peic	herung:		
Σ10	t _{HP}			$q_{s,H}$			Σ9	×	t _{HF}		_ =		$q_{HG,s}$
W/m² ×	$h/a \times 0$			0 kWh/(W/m²				$a \times 0,001 =$		0 kWh/(m²a)
Deckungsa	nteile, Erzeug	eraufwa	ands	zahler	n und	d Pi	rimärenerg	jiefa	ktoren	He	izung und l	∟üft	ung
		a	3			e _{gH}	_	a.	e _{qH}		f _P		a⋅e _{qH} ⋅f _P
Erzeuger 1			1,0	×			1,08 =		1,08	×	1,07	=	1,16
Erzeuger 2				×			=			×		=	
Erzeuger 3				×			=			×		=	
-							Σ11 =		1,08		Σ12	=	1,16
Spezifische	Wärmeverlus	te der	Trans	smissi	on								
	U		A		ЛIN			mittle	erer U-W	ert:			
Wand	1,30 W/(m ² K)		32 m²		1,0 =		951,6 W/K		Σ14		Σ13		U_{m}
Kellerdecke/													
Bodenplatte	0,70 W/(m ² K)	× 5	04 m²	×),5 =		176,4 W/K	2	2092 W/	K ·	÷ 1940 m²	=	1,08 W/(m ² K)
Fenster	2,55 W/(m ² K)	× 2	00 m²	× 1	1,0 =		510,0 W/K	Kom	paktheit				
Dach/Decke			04 m²		1,0 =		453,6 W/K		· Σ13		A_{EB}		A_H/A_{EB}
	Σ13		40 m²		14 =		2092 W/K		1940 m) ² ÷		=	1,767
Wärmeverlust	durch Transmissi				-								.,. 0.
U _m	ϑ _{im}		am		A_{\vdash}	-/A _{EE}	3	t_{HP}					q_{T}
1,08 W/(m ² K)		- (6,3 °C) ×				7080	h/a	×	0,001 =		199 kWh/(m²a)
. ,	Wärmeverlus												
n _{nat}		Anl	-3110	n _{Res}							Δn		n
0,61/h		1/h	+	''Kes	1/h) =		0.6 1/	′h +		0,3 1/h	=	0,9 1/h
Wärmeverlust		./11	•		.,,,,	, –		,,0 1/	. ,		5,5 1/11	_	0,0 1/1
h	J	$\vartheta_{\sf im}$		$\vartheta_{\sf am}$			n		t _{HP}				q_V
2,5 m ×	0,34 ×(21 °C	-	6,3 °C) ×		0,9 1/h ×			a ×	0,001 =		80 kWh/(m²a)
_,,, ^	-/ //	•		5,5 €			2,3 ./11 ^			_ ^	3,001 -		(m α)

Snezifische	r solarer Fremo	dwärmean									
Ородинасно		G	Idii	g			Α		r		
Süd		560 kWh/(m²a) ×		0,76 ×	-	48 · 1.68 n	n² ×	0,36	=	12355 kWh/a
Ost		375 kWh/(0,76 ×		21 · 1,40 n	n² ×	0,36	=	3016 kWh/a
Nord		210 kWh/(m²a) ×		0,76 ×		36 · 1,68 n	n² ×	0,36	=	3475 kWh/a
West		375 kWh/(m²a) ×	(0,76 ×		21 · 1,40 n	n² ×	0,36	=	3016 kWh/a
Dach		0 kWh/(m²a) ×		0 ×		0 n	n² ×	0	=	0 kWh/a
					Σ15 =		200 n	n²	Σ16	=	21862 kWh/a
Σ16		Σ15			G _m g _m r _m		ensterfläd	chenant			
	3621 kWh/a ÷	200	m² =	109),3 kWh/ı	n²a	Σ15	2	A _H	1	A _{Fe} /A _H
ODER: G _m	a	-		G	2 a r		200	m² ÷	1940	m²	= 0,103
kWh/(m	9 _m	×	=		S _m g _m r _m kWh/ı	m²a					
Solarer Fremd											
$G_{m^{\cdot}} \; g_{m^{\cdot}} \; r_{m}$		A_{Fe}/A_{H}				A _H /A _E	В				qs
109,3 kWh/(m	ı²a) ×		0,103 >	<			1,7	67 =			20 kWh/(m²a)
Spezifischei	r innerer Fremo	dwärmean	fall								
Trink	warmwasserbereit	ung			Heizung	und L	üftung				
$q_{WG,d}$		q _{WG,s}		q _{HG}			q _{HG} ,				Σ17
8 kW nnerer Fremdy	h/(m²a) +	0 kWh/(m²a)) +	31 kW	/h/(m²a)	+	0 kW	h/(m²a)	=		39 kWh/(m²a)
	waimeanfall:	à									_
Σ17		q _i		t _{HP}							qı
	(m²a) +	3,5 W/m ²	2 ×	7	7080 h/a	X	0,001	=			64 kWh/(m²a)
remdwärm	enutzungsgrad	d									
qı		qs	,	q _T				q _V	2)		γ
~			<u>.</u> (199 kW	/h/(m²a)	+	80	kWh/(r	n²a)) =		0,301
64 kWh/	· /	$Wh/(m^2a)$)	. (, ,						
remdwärmen	utzungsgrad:	wn/(m²a)) ·	. (,	٥/					n
	utzungsgrad:		,			γ) =			η 0.846
Fremdwärmen f _η	utzungsgrad: 0,90 × (1,0 -	0,2	×		γ	0,301) =			η 0,846
remdwärmen f _n Spezifische	utzungsgrad: 0,90 × (Nutzenergie d	1,0 - er Heizunç	0,2 g und Li	×		·					0,846
Fremdwärmen f _n Spezifische q _T	utzungsgrad: 0,90 × (Nutzenergie d	1,0 - er Heizung	0,2	× üftung			0,301	qs	/(m²a)) +		0,846 q _h
Fremdwärment f _η Spezifische q _τ 199 kWh/	utzungsgrad: 0,90 × (Nutzenergie d	1,0 - er Heizuno lv h/(m²a) -	0,2 g und Li η 0,846	× üftung ×(q 59 kW	h/(m²a	0,301	qs	/(m²a)) +		0,846 q _h
Fremdwärmenn f _η Spezifische q _τ 199 kWh/ Spezifische q _h	utzungsgrad: 0,90 × (Nutzenergie de (m²a) + 80 kWI Endenergie W	1,0 - er Heizung v h/(m²a) - /ärme der q _{d,H}	0,2 g und Li η 0,846 Heizung	× üftung ×(g und l	q 59 kW Lüftun g q _{s,H}	h/(m²a	0,301 a) +	qs			0,846 q _h 212 kWh/(m²a)
Fremdwärmenn f _η Spezifische q _τ 199 kWh/ Spezifische q _h	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWI Endenergie W	1,0 - er Heizung v h/(m²a) - l'ärme der	0,2 g und Li η 0,846 Heizung	× üftung ×(g und l	q 59 kW Lüftunç	h/(m²a	0,301 a) +	q _s 20 kWh Σ11	/(m²a)) +		0,846 q _h 212 kWh/(m²a)
Fremdwärmenn f _η Spezifische q _T 199 kWh// Spezifische q _h 212 kV	utzungsgrad: 0,90 × (Nutzenergie de (m²a) + 80 kWl Endenergie W	1,0 - er Heizung h/(m²a) - darme der q _{d,H} 41 kWh/(n	0,2 g und Li n 0,846 Heizung	× üftung ×(g und l	q 59 kW Lüftung q _{s,H} 0 kWh/(i q _{s,H}	h/(m²a) m²a)	0,301 a) + 2	q _s 20 kWh	1,08 =		0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a)
Fremdwärmenn f _η Spezifische q _T 199 kWh/ Spezifische q _h 212 kV	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWI Endenergie W Wh/(m²a) +	1,0 - er Heizung h/(m²a) - d'arme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n	0,2 g und Li n 0,846 Heizung n²a) +	× üftung ×(g und l	q 59 kW Lüftun ç q _{s,H} 0 kWh/(ı	h/(m²a) m²a)	0,301 a) + 2	q _s 20 kWh Σ11			0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a)
Fremdwärmenn f _η Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWl Endenergie W Wh/(m²a) + Wh/(m²a) + Endenergie all	1,0 - er Heizung h/(m²a) - d'arme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n	0,2 g und Li n 0,846 Heizung n²a) +	× üftung ×(g und l	q 59 kW Lüftung q _{s,H} 0 kWh/(i q _{s,H}	h/(m²a) m²a)	0,301 a) + :	q _s 20 kWh Σ11	1,08 =		0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a)
Fremdwärmenn f _η Spezifische q _T 199 kWh/ Spezifische q _h 212 kV	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWI Endenergie W Wh/(m²a) + Endenergie all q _H	1,0 - er Heizung h/(m²a) - l'ärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n	0,2 g und Li n 0,846 Heizung n²a) + n²a) +	× üftung ×(g und l	q 59 kW Lüftun @ Q _{s,H} 0 kWh/(i 0 kWh/(i	h/(m²a) m²a) m²a)	0,301 a) + 3 y × y × y × y × y × y × y × y × y × y ×	q _s 20 kWh Σ11	1,08 =		0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a)
Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h 218 kV	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWI Endenergie W Wh/(m²a) + Wh/(m²a) + Endenergie all q _H 27	1,0 - er Heizung h/(m²a) - därme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + n²a) + energie	× üftung ×(g und l	q 59 kW Lüftun @ Q _{s,H} 0 kWh/(i 0 kWh/(i	h/(m²a) m²a) m²a)	0,301 a) + :	q _s 20 kWh Σ11	1,08 =		0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a)
Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h 218 kV	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWI Endenergie W Wh/(m²a) + Endenergie all q _H	1,0 - er Heizung h/(m²a) - därme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + energie 0 + ergien	× üftung ×(g und l	q 59 kW Lüftung q _{s.H} 0 kWh/(i q _{s.H}	h/(m²a) m²a) m²a)	0,301 a) + 3 y × y × y × y × y × y × y × y × y × y ×	q _s 20 kWh Σ11	1,08 =		0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a)
Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h 218 kV	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWl Endenergie W Wh/(m²a) + Wh/(m²a) + Endenergie all q _H 27 Endenergie all	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n dd,H 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + n²a) + energie 0) + ergien q E	× üftung × (g und l	q 59 kW Lüftung q _{s.H} 0 kWh/(i q _{s.H} 0 kWh/(i	h/(m²a) m²a) m²a) kWh/	0,301 a) + :) × q _w (m ² a) =	q _s 20 kWh Σ11	1,08 = 1,16 = a		0,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a)
Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h 218 kV	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kW! Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation	1,0 - er Heizung h/(m²a) - lärme der d _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(m	0,2 g und Li n 0,846 Heizung n²a) + energie cergien delige delige 0,09 W/m	× üftung × (g und l	q 59 kW Lüftung q _{s,H} 0 kWh/(i q _{s,H} 0 kWh/(i 55	h/(m²a) m²a) kWh/	0,301 a) + :) × q _w (m ² a) =	q _s 20 kWh Σ11	1,08 = 1,16 = a		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q h 218 kV Spezifische	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWi Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum	1,0 - er Heizung h/(m²a) - ärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + energie 0, + ergien q 0,09 W/m 0,09 W/m	×iüftung	9 59 kW Lüftung 9s.H 0 kWh/(i 9s.H 0 kWh/(i 55 t _{El} 8000 500	h/(m²a) m²a) kWh/ h/a >	0,301 a) + :) × yw (m ² a) =	qs 20 kWh Σ11 Σ12	1,08 = 1,16 = a		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q h 218 kV Spezifische Spezifische	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWi Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1	1,0 - er Heizung h/(m²a) - ärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + energie 0 + ergien q i 0,09 W/m 0,09 W/m 0,20 W/m	× iüftung	9 59 kW Lüftung 9.H 0 kWh/(i 9.H 0 kWh/(i 555 t _{EI} 8000 500 350	h/(m²a) m²a) kWh/ h/a > h/a > h/a >	$0,301$ $(a) + (b) \times (a) \times ($	qs 20 kWh Σ11 Σ12	1,08 = 1,16 = a = 1,0 = 1		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) 0,070 kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWi Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2	1,0 - er Heizung h/(m²a) - ärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m 0,20 W/m	× iüftung	9 59 kW Lüftung 9.H 0 kWh/(i 9.H 0 kWh/(i 555 t _{EI} 8000 500 350	h/(m²a) m²a) kWh/ h/a > h/a > h/a > h/a >	0,301 a) + :) × (m ² a) = (0,001	qs 20 kWh Σ11 Σ12 × ×	1,08 = 1,16 = a = 1,0 = 1		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a)
Frendwärmenn fn Spezifische qt 199 kWh/ Spezifische qh 212 kV qh 218 kV Spezifische Spezifische	utzungsgrad: 0,90 × (Nutzenergie d (m²a) + 80 kWi Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1	1,0 - er Heizung h/(m²a) - ärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m 0,20 W/m	× iüftung × (g und l en x (g und l en en x (g und l en en en en en en en en en e	9 59 kW Lüftung 9s.H 0 kWh/(i 9s.H 0 kWh/(i 55 t _{El} 8000 500 350	h/(m²a) m²a) kWh/ h/a > h/a > h/a > h/a > h/a >	0,301 a) + :) × qw (m²a) =	qs 20 kWh Σ11 Σ12	1,08 = 1,16 = 1,16 = 1,0		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kW! Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n dd,H 41 kWh/(n ler Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m 0,09 W/m W/m W/m	igtung × (g und l x y y y y y y y y	9 59 kW Lüftung 9s.H 0 kWh/(i 9s.H 0 kWh/(i 55 t _{El} 8000 500 350	h/(m²a) m²a) kWh/ h/a > h/a > h/a > h/a > h/a > h/a >	0,301 a) + : qw (m²a) = c 0,001 c 0,001 c 0,001 c 0,001 c 0,001 c 0,001	qs 20 kWh Σ11 Σ12 × ×	1,08 = 1,16 = 1,16 = 1,0		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kWi Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n 41 kWh/(n 41 kWh/(n 41 kWh/(m er Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie d _{EI} 0,09 W/m 0,09 W/m 0,09 W/m W/m W/m 0,30 W/m	igtung × (g und l x y y y y y y y y	9 59 kW Lüftung 9s.H 0 kWh/(i 9s.H 0 kWh/(i 55 t _{El} 8000 500 350	h/(m²a) m²a) kWh/ h/a > h/a > h/a > h/a > h/a > h/a >	0,301 a) + : qw (m²a) = c 0,001	qs 20 kWh Σ11 Σ12 × ×	1,08 = 1,16 = 1,16 = 1,0	= = = = = = = = = = = = = = = = = = = =	Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische Frinkwarm- vasserberei- ung	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kWi Endenergie W Wh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n 41 kWh/(n 41 kWh/(n ler Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie d _{EI} 0,09 W/m 0,09 W/m 0,09 W/m W/m W/m 0,30 W/m	× (g und I y (g und I) (g und I y (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I) (g und I y (g und I) (g	9 59 kW Lüftung 9s.H 0 kWh/(i 9s.H 0 kWh/(i 55 t _{El} 8000 500 350	h/(m²a) m²a) h/a >	0,301 a) + : qw (m²a) = c 0,001	qs 20 kWh Σ11 Σ12 × ×	1,08 = 1,16 = 1,16 = 1,0	= = = = = = = = = = = = = = = = = = = =	Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische Frinkwarm- vasserberei- ung Heizung und	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kWl Endenergie W Nh/(m²a) + Endenergie all q H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepum	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n 41 kWh/(n 41 kWh/(n ler Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m W/m W/m W/m 0,30 W/m 0,05 W/m	× (g und I y (g und I) (g und I y (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I) (g und I y (g und I) (g	9 59 kW Lüftung 9s.H 0 kWh/(i 9s.H 0 kWh/(i 555 t _{EI} 8000 500 3500	h/(m²a) m²a) h/a >	0,301 a) + : qw (m²a) = 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	qs 20 kWh Σ11 Σ12 × × ×	1,08 = 1,16 = 1,16 = 1,0	= = = = = = = = = = = = = = = = = = = =	Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{El} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische Frinkwarm- wasserberei- ung Heizung und	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kWl Endenergie W Nh/(m²a) + Endenergie all q 4 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 Erzeuger 3 Endenergie all	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n 41 kWh/(n 41 kWh/(n ler Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m W/m W/m W/m 0,30 W/m W/m W/m 0,05 W/m W/m	x (g und l g	9 59 kW Lüftung 9s.H 0 kWh/(i) 55 t _{El} 8000 500 3500	h/(m²a) m²a) h/a >	0,301 a) + : qw (m²a) = c 0,001	γ _s 20 kWh Σ111 Σ12 × × × × ×	1,08 = 1,16 = 1,16 = 1,0		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische q 212 kV q 218 kV Spezifische Spezifische Frinkwarm- wasserberei- ung Heizung und	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kWI Endenergie W Nh/(m²a) + Endenergie all q 4 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 ventilator	1,0 - er Heizung h/(m²a) - lärme der dd,H 41 kWh/(n 41 kWh/(n 41 kWh/(n ler Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m W/m W/m W/m 0,30 W/m	× (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I) (g	9 59 kW Lüftung 9s.H 0 kWh/(i) 55 t _{El} 8000 500 3500	h/(m²a) m²a) m²a) kWh/ h/a >	0,301 qw (m²a) = (0,001	γ _s 20 kWh Σ111 Σ12 × × × ×	1,08 = 1,16 = 1,16 = 1,0		Q,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a)
Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h 218 kV Spezifische Spezifische Frinkwarm- wasserberei- ung Heizung und	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kW! Endenergie W Nh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 ventilator sonstige	1,0 - er Heizung h/(m²a) - lärme der d _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(n ler Wärme 73 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,20 W/m 0,09 W/m 0,09 W/m 0,009 W/m 0,009 W/m	× (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I) (g	9 59 kW Lüftung 9s.H 0 kWh/(i) 55 t _{El} 8000 500 3500	h/(m²a) m²a) m²a) kWh/ h/a >	0,301 a) + : qw (m²a) = c 0,001	γ _s 20 kWh Σ111 Σ12 × × × ×	1,08 = 1,16 = 1,16 = 1,0		Q,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)
Spezifische q _T 199 kWh/ Spezifische q _h 212 kV q _h 218 kV Spezifische Spezifische Frinkwarm- wasserberei- ung Heizung und	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kWI Endenergie W Nh/(m²a) + Endenergie all q 4 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 ventilator sonstige Endenergie der H	1,0 - er Heizung h/(m²a) - lärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(m²a) ler Wärme r3 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m W/m W/m 0,30 W/m	× (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I) (g	9 59 kW Lüftung 9s.H 0 kWh/(i) 55 t _{El} 8000 500 3500	h/(m²a) m²a) m²a) kWh/ h/a >	0,301 qw (m²a) = (0,001	γ _s 20 kWh Σ11 Σ12 × × × × × × × × × × × ×	1,08 = 1,16 = 1,16 = 1,0 =		Q _h 212 kWh/(m²a) Q _H 273 kWh/(m²a) Q _{H,P} 293 kWh/(m²a) Q _{EI} 0,720 kWh/(m²a) Q _{O,720} kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a)
Fremdwärmenn f n Spezifische q 199 kWh/ Spezifische (212 kV q h 218 kV Spezifische Spezifische Trinkwarm- wasserberei- tung	utzungsgrad: 0,90 × (Nutzenergie d q (m²a) + 80 kW! Endenergie W Nh/(m²a) + Endenergie all q _H 27 Endenergie all Zirkulation Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepum Erzeuger 1 Erzeuger 2 Erzeuger 3 ventilator sonstige	1,0 - er Heizung h/(m²a) - lärme der q _{d,H} 41 kWh/(n q _{d,H} 41 kWh/(m²a) ler Wärme r3 kWh/(m²a) ler Hilfsend	0,2 g und Li n 0,846 Heizung n²a) + energie 0,09 W/m 0,09 W/m W/m W/m 0,30 W/m	× (g und I y (g und I) (g und I y (g und I) (g und I y (g und I) (g und I) (g	9 59 kW Lüftung 9s.H 0 kWh/(i) 55 t _{El} 8000 500 3500	h/(m²a) m²a) m²a) kWh/ h/a >	0,301 a) + : qw (m²a) = c 0,001	γ _s 20 kWh Σ11 Σ12 × × × × × × × × × × × × × × × × × × ×	1,08 = 1,16 = 1,16 = 1,00 = 1,		Q,846 q _h 212 kWh/(m²a) q _H 273 kWh/(m²a) q _{H,P} 293 kWh/(m²a) q _{EI} 0,720 kWh/(m²a) 0,045 kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a) kWh/(m²a)

Spe	ezifische Primärenerg	ie				
	$q_{H.P}$		$q_{W,P}$	$q_{El,P}$		q_{P}
	293 kWh/(m ² a)	+	59 kWh/(m²a) +	0.1-\1/1-//2-\	=	361 kWh/(m²a)

2.1.4. Leervordruck

Z.1.4.	Leervorun											
Allgemeine	Daten											
Nutzungstyp:						Baualtersk	lasse):				
Bauweise:						Sonstiges:						
Flächen un	d Kompakthe	it				Ü						
A _{EB}	=	m²				A _H		=		m²		
h	=	m				A _{Fe}				m²		
Kompaktheit:						Fensterflä	chena	anteil:				
A _H	A_{EB}	A	/A _{FB}			A_FE			Α	н		A_{FE}/A_{H}
		n² =					m²	÷		m² =		
Heizzeit, To	emperaturen											
ϑ_{HG} =		$^{\circ}$ C ϑ_{am}			=		°C	l t _Y	=	d/a =		h/a
ϑi	f _{ABS}	- am	f_{REG}			$\vartheta_{\sf im}$						
°C ×		×			=		°C	t _{HP}	=	d/a =		h/a
	er Verteilverlus	st für die T	rinkwa	armwas	sse	rbereitun	0					
		DN		/A _{EB}		q	9	f _{BW}				
	1						_			141/2		\\//2
	- (Y 1'	:		m/m²	×	W/r			_ =	W/m²	=	W/m²
	ständig	:		m/m²	X	W/r				W/m²	=	W/m²
	durchflossen	:		m/m²	×	W/r			=	W/m²	_	W/m²
in der ge-		:		m/m²	X	W/r			=	W/m²	_	W/m²
dämmten		:		m/m²	X	W/r				W/m²	_	W/m²
Hülle	nicht ständig	:		m/m²	X	W/r			=	W/m²	=	W/m²
	durchflossen	:		m/m²	X	W/r	_			W/m²	=	W/m²
		:		m/m²	X	W/r	n ×		=	W/m²	=	W/m²
	T			, .						↓ Σ1	=	W/m²
		:		m/m²	X	W/r				W/m²		
	ständig	:		m/m²	X	W/r	_	_		W/m²		
außerhalb	durchflossen	:		m/m²	X	W/r			=	W/m²		
der ge-		:		m/m²	X	W/r				W/m²		
dämmten		:		m/m²	X	W/r			=	W/m²		
Hülle	nicht ständig	:		m/m²	X	W/r				W/m²		
	durchflossen	:		m/m²	X	W/r				W/m²		
		:		m/m²	×	W/r	n ×		=	W/m²		
14/2	Later Mentallines					F 1		(- II	Σ2=	W/m²		
	t der Verteilung:		_			Fremdwär	mean			lung:		_
$\Sigma 2$ W/m ²	t _Y	× 0,001=		_{i,w} h/(m²a)		Σ1	n² ×		t _{HP} h/a	v 0 001 -		q _{wg,d} kWh/(m²a)
				_ ,					II/a	× 0,001 =		KVVII/(III-a)
Spezifische	er Speichervei	riust für ale	: I LIUK	warmv	-							
		V _S /A _{EE}	3		$q_{\rm SI}$	•	f_{BW}					
			I/m²	×		W/I ×		-	=	W/m² =	=	W/m²
Innerhalb der hülle	gedammten		I/m²	×		W/I ×		-		W/m² =		W/m²
nulle										Σ3=		W/m²
0 1 11 1			l/m²	×		W/I ×		-	=	W/m²		
außerhalb dei	r gedämmten		I/m²	×		W/I ×		-		W/m²		
hülle							2	Σ4=		W/m²		
Wärmeverlust	t der Speicherung	j:				Fremdwär	mean	fall au	s Speic	herung:		-
$\Sigma 4$	t _Y			s,W		Σ3			t _{HP}	-		$q_{\text{WG,s}}$
W/m²		< 0,001 =		h/(m²a)			1 ² ×			× 0,001 =		kWh/(m²a)
Deckungsa	anteile, Erzeug	geraufwand	lszah	len und	l Pi	rimärener	giefa	aktore	en Trir	nkwarmwas	ser	bereitung
		а			g,W		_	·e _{gW}		f _P		a⋅e _{gW} f _P
Erzeuger 1			×			=			×		=	
Erzeuger 2			×			=			×		=	
Erzeuger 3			×			=			×		=	
						Σ5 =				Σ6	=	
				1								

Spezifisch	e Endenergie \	Wärme	der Trir	nkwarm	wass	erbereitu	ing				
	q _w	q _{d,}				s,W		Σ5			q _w
•	kWh/(m²a) +		Wh/(m²a)	+		kWh/(m²a)) ×	2.0	=		kWh/(m²a)
	q _w kWh/(m²a) +	q _{d,}	w Wh/(m²a)	+		l _{s,w} kWh/(m²a)) ×	Σ6	_		q _{W,P} kWh/(m²a)
	er Verteilverlus					KWII/(III a)	_ / ^				KWII/(III a)
Ородиност	or vortom or ac	DN		L/A _{EB}	tarig	q_L		f _{BH}			
		DIV		m/m²	×	ML W/m	ı ×	-вн	W/m²	=	W/m²
in der ge- dämmten Hülle	ständig			m/m²		W/m			W/m²	_	W/m²
	durchflossen		:	m/m²	_	W/m		=	W/m²	=	W/m²
			:	m/m²	×	W/m	ı ×	=	W/m²	=	W/m²
			:	m/m²	×	W/m		=	W/m²	=	W/m²
	nicht ständig		:	m/m²	×	W/m		=	W/m²	=	W/m²
	durchflossen		:	m/m² m/m²		W/m W/m		=	W/m² W/m²	=	W/m² W/m²
				111/1112	X	VV/II	I X	=	ψ VV/III- Σ7	_	W/m²
			:	m/m²	×	W/m	1 ×	=	W/m ²	_	VV/111
	ständig			m/m²		W/m		=	W/m²		
	durchflossen		:	m/m²	×	W/m	ı ×	=	W/m²		
außerhalb der ge-			:	m/m²	×	W/m		=	W/m²		
dämmten			:	m/m²		W/m		=	W/m²		
Hülle	nicht ständig		:	m/m²		W/m		=	W/m²		
	durchflossen		:	m/m² m/m²	_	W/m W/m		=	W/m² W/m²		
			•	111/1112	×	VV/II	1 ×	Σ8=	W/m²		
Wärmeverlus	st der Verteilung:					Fremdwärm	neanfa	all aus Verte			
Σ8	t _{HP}		q	d,H		Σ7		t _{HP}	9.		$q_{HG,d}$
m²				Vh/(m²a)		W/m ²	2 ×	h/a	$a \times 0.001 =$		kWh/(m²a)
Spezifisch	er Speicherver	lust der	^r Heizur	ng							
		Vs	/A _{EB}		\dot{q}_{SP}		f_{BH}				
			I/m	2 ×		W/I ×		=	W/m²	=	W/m²
innerhalb de hülle	r gedämmten		I/m	2 ×		W/I ×		=	W/m²	=	W/m²
Tidilo									Σ9=		W/m²
außerhalb de	er gedämmten		I/m			W/I ×		=	W/m²		
hülle			I/m	2 ×		W/I ×	Σ1	=	W/m² W/m²		
Wärmeverlus	st der Speicherung					Fremdwärm		u= all aus Speic			
Σ10	t _{HP}	•	q	s,H		Σ9	icariic	t _{HP}	incruing.		$q_{HG,s}$
W/m²		0,001 =	k۱	Nh/(m²a)		W/m ²		h/a			kWh/(m²a)
Deckungs	anteile, Erzeug	eraufwa	andszal	hlen und	d Prii	märenerç	giefa	ktoren He	izung und L	üftı	ung
		a	a		e_{gH}		a⋅e	₽gH	f _P		a⋅e _{gH} ⋅f _P
Erzeuger 1			×	(×		=	
Erzeuger 2			>			=		X		=	
Erzeuger 3			×	(=		X	210	=	
Snezifiech	e Wärmeverlus	ste der	Tranem	ission		Σ11 =			Σ12	_	
Оредпівсії	U		HallSIII A	f _{MIN}			mittle	erer U-Wert:			
Wand	W/(m²K)	×	m² ×		=	W/K	muuc	Σ14	Σ13		U_{m}
Kellerdecke/											
Bodenplatte	W/(m²K)	×	m² ×	(=	W/K		W/K ÷	÷ m²	=	W/(m²K)
Fenster	W/(m²K)	×	m² ×	(=	W/K	Kom	oaktheit:			
Dach/Decke	W/(m²K)		m² >		=	W/K		Σ13	A _{EB}		A_H/A_{EB}
Wärmeverlug	Σ13 st durch Transmiss	=	m²	Σ14	=	W/K		m² ÷	÷ m²	=	
U _m	$_{-}$		am	A	-/A _{EB}		t _{HP}				q_T
W/(m²k	() ×(°C	-	°C)		ED	×		h/a ×	0,001 =		kWh/(m²a)
	e Wärmeverlus	ste der									
n _{nat}		1 _{Anl}		n _{Rest}					Δn		n
1/h	ODER (1/h	+	1/h) =		1/	h +	1/h	=	1/h
	st durch Lüftung:										
h m	ρ·C _P	$\vartheta_{\sf im}$ °C	ϑ_{a}	°C)>		n 1/b	. =	t _{HP}	v 0 004		q _V
III ×	0,34 × (-	U)>	<	1/h	X	h/a	× 0,001 =		kWh/(m²a)

On a 'f' a ala	n a alaman Enganala "s								
Spezifische	er solarer Fremdwäi	meanfall			Δ.		_		
Süd	G	⟨Wh/(m²a) ×	g		Α	m² ×	r		kWh/a
Ost				×		_		=	kWh/a
Nord		·		×		_			kWh/a
		$\frac{\text{kWh/(m^2a)}}{\text{kWh/(m^2a)}} \times$		×		_			
West		⟨Wh/(m²a) ×		×		m² ×		= _	kWh/a
Dach		⟨Wh/(m²a) ×	Σ1	× =		m ² ×	54	=	kWh/a kWh/a
54	•	545			Fensterflä		Σ1	6 =	KVVII/a
Σ10		$\Sigma 15$ m ² =	G _m g	տ ^լ տ ‹Wh/m²a	rensterna Σ15	acnenan			Λ /Λ
ODER:	kWh/a ÷	111- =		(VVII/III-a	213	m² ÷	A	m ²	A _{Fe} /A _H
G _m	g _m	r _m	G _m g	r		111 -		111	_
	n²a) × ym ×	- m =	_	w m kWh/m²a					
Solarer Fremo				α					
$G_{m^{\cdot}} g_{m^{\cdot}} r_{m}$	A	-e/A _H		A _H //	A _{EB}			q	s
kWh/(n	n²a) ×		×			=			kWh/(m²a
Spezifische	er innerer Fremdwä	rmeanfall							,
	warmwasserbereitung		He	izung und	l Lüftuna				
q _{WG.d}	q _{wo}		q _{HG.d}	izang and	q _H	3 e			Σ17
		/h/(m²a) +		m²a) +		Vh/(m²a') =		kWh/(m²a
Innerer Fremd	wärmeanfall:		,			\			`
Σ17	q _i		t _{HP}					q	i.
	/(m²a) +	W/m² ×	יחר	h/a ×	0,001			٦	kWh/(m²a
	1 /	VV/III- X		II/a X	0,001	=			KVVII/(III-a
	nenutzungsgrad								
qı	qs	2)) (q ⊤	2 \		q _V	2))		γ
`	/(m²a) + kWh/(r	m²a))÷(kWh/(m²a) +		kWh/(m²a))=	=	
Fremdwärmer	~ ~								
f,		- 0,3	.,		γ	_		η	
Coorificaba			×) =			
•	Nutzenergie der H	eizung und L	unung	_					-
Q _T	(/3-) . I-\\//- //3	η	,	q ₁	.2=\ .	q _s	//2-\		Q _h
_	/(m²a) + kWh/(m²	,	×(kWh/(m	1²a) +	KVV	n/(m²a)) +	kWh/(m²a)
Spezifische	Endenergie Wärm	e der Heizung	g una Lui	tung					
q		q _{d,H}	q			Σ11			q _H
`	Wh/(m²a) +	kWh/(m²a) +	K	Wh/(m²a)) ×			=	kWh/(m²a
q		q _{d,H}	q			Σ12			q _{H,P}
	Wh/(m²a) +	kWh/(m²a) +		Wh/(m²a)) ×			=	kWh/(m²a)
Spezifische	Endenergie aller V	Värmeenergie	en						
	q _H			q _W				q	
		/h/(m²a) +		kW	h/(m²a) =				kWh/(m²a)
Spezifische	Endenergie aller F	lilfsenergien							
		\dot{q}_{EI}		t_{EI}			а		q_{EI}
	Zirkulation	W/m	1 ² ×	h/a	× 0,00	1		=	kWh/(m²a
	Speicherladepumpe	W/m		h/a	× 0,00			=	kWh/(m²a
Trinkwarm-	Erzeuger 1	W/m		h/a	× 0,00			=	kWh/(m²a
wasserberei-	Erzeuger 2	W/m		h/a	× 0,00			=	kWh/(m²a
tung	Erzeuger 3	W/m		h/a	× 0,00			=	kWh/(m²a
	sonstige	W/m		h/a	× 0,00			=	kWh/(m²a
	Umwälzpumpe	W/m		h/a	× 0,00			=	kWh/(m²a
	Speicherladepumpe	W/m		h/a	× 0,00			=	kWh/(m²a
	Erzeuger 1	W/m		h/a	× 0,00			=	kWh/(m²a
Heizung und	Erzeuger 2	W/m		h/a	× 0,00			=	kWh/(m²a
Lüftung	Erzeuger 3	W/m		h/a	× 0,00			=	kWh/(m²a
	Ventilator	W/m		h/a	× 0,00			=	kWh/(m²a
	sonstige	W/m		h/a	× 0,00			=	kWh/(m²a
	Endenergie der Hilfse		. ^	11/4	^ 0,00		q _{EI}	=	kWh/(m²a
	Primärenergien der Hi				q _{EI}	×	f _{P,EI}	=	q _{EI,P}
	a. onorgion doi 111				ષ્ક⊩ kWh/(m		'P,EI	=	kWh/(m²a
						, ^			
Spezifische	Primärenergie								
Spezifische	Primärenergie	Q			O				O.
Spezifische	Primärenergie q _{H,P} kWh/(m²a) +	q _{w,P} kWh /	(m²a) +		q _{EI,P}	Vh/(m²a') =		q _P kWh/(m²a)