MFH - Rechnung Tabellen

1. Gebäudedaten

Mehrfamilienhaus in Wolfenbüttel. 1974 errichtet. 1994 Ersatz des vorher installierten Konstanttemperaturkessel durch einen Niedertemperaturkessel. Keine weiteren Sanierungsmaßnahmen bis 2002. 12 Wohneinheiten mit einer Größe von je 91,5 m². Im Schnitt von je 3 Personen je Wohneinheit.

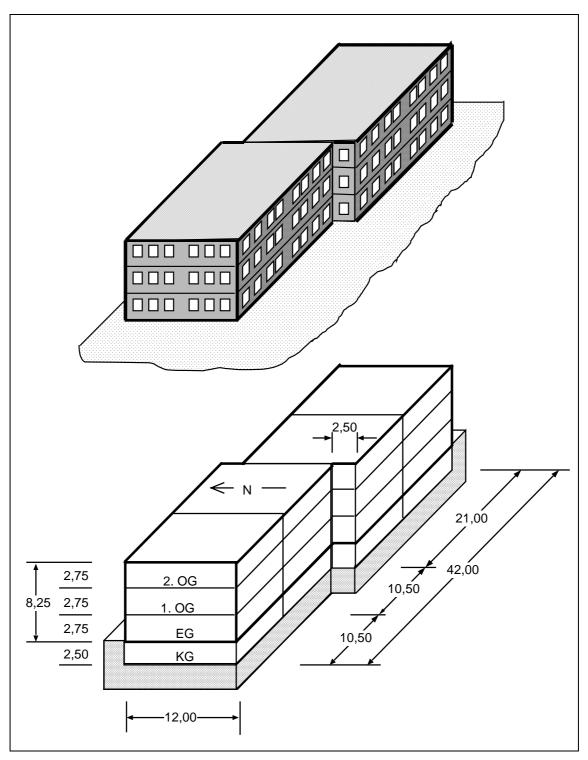


Bild 1.1 Mehrfamilienhaus

2. Bedarfsberechnung mit Gesamtbilanz

	na i latan											
Nutzungstyp:	ne Daten					Baualterskla	ece.	VO	r 77			
Bauweise:	mittelsch	ver				Sonstiges:	1330.			nr 1974		
Flächen i	und Kompak					3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -			.,.	-		
A _{EB}		1098 m ²				A _H		=		1940 m²		
h	=	2,5 m				A _{Fe}		=		199,9 m²		
Kompaktheit:						Fensterflächenanteil:						
A _H 1940 r	A _{EB} m² ÷ 1098 m	A_{H}/A_{EB} $n^{2} = 1.767$				A _{FE} 199,9 m ² ÷				N _H 940 m² =		A _{FE} /A _H 0,103
	Temperatur		1,7	01		199,5	7 111	-		940 111		0,103
	remperatur 17°					6.3	3°C	+ -		365 d/a =		8760 h/a
$\vartheta_{HG} = \vartheta_{i}$	f _{ABS}	C T	am f _{RE0}			ϑ_{im}	, ,	ty -		303 U/a =		6760 II/a
20 °C ×		7 ×	'REC	1,03 =	-	20) °C	t _{HP} =	-	295 d/a =		7080 h/a
Spezifisc	her Verteilve	erlust f	ür die	Trink	var				ıa_			
		DN		L/A _{EB}		ġL		f_{BW}	3			
		10-15		55 m/m²	×	8,6 W/m	×	1,0	_	0,473 W/m²	=	0,473 W/m²
	ständig	10-13	. 0,0	m/m²		W/m		1,0	_	W/m ²	=	W/m ²
	durchflossen		:	m/m²	_	W/m			=	W/m²	=	W/m²
in der			:	m/m²		W/m			=	W/m²	=	W/m²
gedämmten		10-15	: 0,1	82 m/m ²		3,4 W/m		1,0	=	0,619 W/m ²	=	0,619 W/m ²
Hülle	nicht ständig durchflossen		:	m/m²	_	W/m			=	W/m²	=	W/m²
	durchilossen		:	m/m² m/m²	×	W/m W/m			=	W/m² W/m²	=	W/m² W/m²
			•	111/111	X	VV/111	X		_		- :1=	1,092 W/m²
		20-32	: 0,1	09 m/m²	×	18,9 W/m	×	1,0	=	2,060 W/m ²		1,002 11/111
	ständig		:	m/m²	×	W/m	×		=	W/m²		
außerhalb	durchflossen		:	m/m²	×	W/m			=	W/m²		
der			:	m/m²	×	W/m	_		=	W/m²		
gedämmten	nicht otändia		:	m/m² m/m²		W/m W/m			=	W/m² W/m²		
Hülle	nicht ständig durchflossen		:	m/m²	×	W/m			=	W/m²		
			:	m/m²	×	W/m			=	W/m²		
									Σ2=	- /		
	der Verteilung:					Fremdwärm	eanfa		/erte	eilung:		
$\Sigma 2$	$_{ ext{Y}}^{ ext{t}_{ ext{Y}}} imes$ 8760 h/a $_{ ext{X}}$	0.001-		9 _{d,W}		Σ1 1,092 W/m²		t _{HP}	h/a	× 0 001 =		q _{wG,d} 8 kWh/(m²a)
	her Speiche											o kvvii/(iii a)
Spezilisci	ner Speiche							Dereil	ıuı	g		
		V _S //			q _{SP}		f _{BW}					
Innerhalb der	gedämmten		I/m I/m			W/I ×		=		W/m ² = W/m ² =	_	W/m² W/m²
hülle			1/111	2 ×		W/I ×				23		W/m²
		0.	,911 l/m	² ×	0,26	6 W/I ×	1,0	0 =	(<u>↓</u>		***************************************
außerhalb der hülle	gedammten		I/m			W/I ×		=		W/m²		
								Σ4=		0,237 W/m ²		
	der Speicherung			~		Fremdwärm	eanfa		Spei	cherung:		~
$\Sigma 4$ 0.237 W/m ²	$_{ imes}^{ ext{t}_{ ext{Y}}}$ $ imes$ 8760 h/a $ imes$	0 001 =		q _{s,W} Vh/(m²a)		Σ3 0 W/m²	: ×	t _{HP}	h/a	× 0,001 =		q _{wg,s} 0 kWh/(m²a)
Deckungs				ufwan	97			nd			ero	iefaktoren
	nwasserber		ag o r a		×10/4		u	Па		- Hillardin	<i>-</i> 19	
riiiikWalli	nwasserber				٠		0.0			f_{P}		a⋅e _{gW} f _P
Erzeuger 1		а	1,0 ×		∋ _{g,W}	1,12 =	a⋅e	_{gw} 1,12	×	1,07	=	1,20
Erzeuger 2			× ×			=		.,	×	1,01	=	1,20
Erzeuger 3			×			=			×		=	
						Σ5 =		1,12		Σ6	=	1,20
Spezifisc	he Endener	gie Wä	irme d	der Tri	nkv	varmwas	ser	berei	tur	ng		
q		$q_{d,W}$				q _{s,W}			Σ5			qw
(18 k	:Wh/(m²a) +	28 kW	/h/(m²a)	+		kWh/(m²a)) ×			1,12 =		54 kWh/(m²a)
,												
, q	w :Wh/(m²a) +	q _{d,w} 28 kW	/h/(m²a)	+		q _{s,w} kWh/(m²a)) ~		Σ6	1,20 =		q _{W,P} 58 kWh/(m²a)

Spezifisch	ner Verteilve	erlust de	er Heiz	zung	und	Lüftung	g				
		DN	L/	A _{EB}		q _L		f_{BH}			
		10-15	0,228	3 m/m²	×	13,9 W/m	×	1,0 =	3,169 W/m ²	=	3,169 W/m ²
	ständig			m/m²	×	W/m	×	=	W/m²	=	W/m²
	durchflossen			m/m²	X	W/m	×	=	W/m²	=	W/m²
in der				m/m²		W/m		=	W/m²	=	W/m²
gedämmten		10-15	0,182	2 m/m²	X	13,9 W/m	_	0,5 =	1,265 W/m ²	=	1,265 W/m ²
Hülle	nicht ständig			m/m²	×	W/m		=	W/m²	=	W/m²
	durchflossen			m/m²	×	W/m	_	=	W/m²	=	W/m²
				m/m²	×	W/m	X	=	W/m² ↓ Σ	=	4,434 W/m²
		20-32	0.220	3 m/m²	.,	5,9 W/m		1,0 =	1,345 W/m ²	:7=	4,434 VV/m²
	ständia	20-32	0,220	m/m²	×	5,9 W/m		1,0 =	W/m ²		
	durchflossen			m/m²		W/m		=	W/m²		
außerhalb				m/m²	_	W/m	_	=	W/m²		
der				m/m²		W/m		=	W/m²		
gedämmten	nicht ständig			m/m²		W/m	_	=	W/m²		
Hülle	durchflossen			m/m²		W/m		=	W/m²		
	Ì			m/m²	×	W/m	×	=	W/m²		
								Σ8=	5,779 W/m ²		
Wärmeverlust	der Verteilung:				F	remdwärm	eanfa	all aus Verte	ilung:		
Σ8	t _{HP}		$q_{d,H}$			Σ7	_	t _{HP}	_ =		q HG,d
	7080 h/a × 0	,	41 kWh			4,43 W/m ²	×	7080 h/a	$\times 0,001 =$		31 kWh/(m²a)
Spezifisch	ner Speiche	erverlust	der H	leizuı	ng						
-	·	V _s /A	FR		\dot{q}_{SP}		f_{BH}				
		<u> </u>		×		W/I ×	DI.	=	W/m² =		W/m²
Innerhalb der o	gedämmten			×		W/I ×		-	W/m ² =	_	W/m²
hülle	Į		1/111	^		VV/I ^		_	↓ Σ9:	_	W/m²
			I/m²	×	,	W/I ×		=	W/m²		***************************************
außerhalb der	gedämmten			×		W/I ×		=	W/m²		
hülle	ı							Σ10=	W/m²		
Wärmeverlust	der Speicherung	:			F	remdwärm	eanfa	all aus Speic	herung:		
Σ10	t _{HP}		$q_{s,H}$			Σ9	×	t _{HP}	_ =		$q_{HG,s}$
W/m² ×	h/a × 0	,		n/(m²a)		W/m²			$\times 0,001 =$		0 kWh/(m²a)
	santeile, E	rzeuger	aufwa	ndsz	ahle	n und	Pr	imärene	rgiefaktor	en	Heizung
und Lüftu	ng										
	_	а		(e_{gH}		a⋅e	∋ _{gH}	f₽		a⋅e _{gH} ⋅f _P
Erzeuger 1			1,0 ×		1	,08 =		1,08 ×	1,07	=	1,16
Erzeuger 2			×			=		×		=	
Erzeuger 3			×			=		×		=	
						E11 =		1,08	Σ12	=	1,16
Spezifisch	ne Wärmev	erluste	der Tr		nissi						
	U	Α		f _{MIN}			mittle	erer U-Wert:			
Wand	1,30 W/(m ² K)	× 732	m² ×	1,0 =	9	51,6 W/K		Σ14	Σ13		U _m
Kellerdecke/ Bodenplatte	0,70 W/(m ² K)	× 504	m² ×	0,5 =	= 1	76,4 W/K	2	2092 W/K	÷ 1940 m²	=	1,08 W/(m ² K)
Fenster	2,55 W/(m ² K)	× 200	m² ×	1,0 =	= 5	10,0 W/K	Kom	paktheit:			
Dach/Decke	0,90 W/(m ² K)		m² ×	1,0 =		53,6 W/K	-	Σ13	A_{EB}		A_H/A_{EB}
	Σ13	= 1940		Σ14 =	_	2092 W/K		1940 m ² ÷		=	1,767
Wärmeverlust	durch Transmiss	sion:	•								
U _m	ϑ _{im}	ϑ an	n	A⊦	-/A _{EB}		t_{HP}				q_T
1,08 W/(m ² K)			3°C)×			7×7	7080	h/a ×	0,001 =		185 kWh/(m²a)
Spezifisch 1	ne Wärmev	erluste	der L <u>ü</u>	ftunç]						
n _{nat}		1 _{Anl}		Rest					Δn		n
0,61/h	ODER (1/h +) =	C),6 1/	h +	0,3 1/h	=	0,9 1/h
	durch Lüftung:		_								
h	ρ·C _P	ϑ _{im}	ϑ _{am}	°C \		n 0.0.1/b		t _{HP}	0.004		q _V
2,5 m ×	0,34 × (20 °C -	6,3	°C)×		0,9 1/h ×		7080 h/a ×	U,UU1 =		74 kWh/(m²a)

O :C			11				
Spezifiscr	ner solarer Fremd	warmeanta		Α		r	
Süd		Wh/(m²a) ×	9 0,76 ×	48 · 1,68 r	n² ×	0,36 =	12355 kWh/
Ost		Wh/(m²a) ×	0,76 ×	21 · 1,40 r		0,36 =	3016 kWh/
Nord		$Wh/(m^2a) \times$	0,76 ×	36 · 1,68 r		0,36 =	3475 kWh/
West		Wh/(m²a) ×	0,76 ×	21 · 1,40 r		0,36 =	3016 kWh/
Dach		$Wh/(m^2a) \times$	0 ×		n² ×	0 =	0 kWh/
	0 11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Σ15 =	200 r		Σ16 =	21862 kWh/
Σ16	Σ1	5	G _m g _m r _m	Fensterflä			21002111111
	3621 kWh/a ÷	200 m ² =	109,3 kWh/m²			A _H	A_{Fe}/A_{H}
ODER:			,	200	m² ÷	1940 m²	
G_{m}	g_{m}	r _m	$G_m g_m r_m$,			
kWh/(m	ı²a) × ×	=	kWh/m²	а			
Solarer Fremd							
$G_{m} \cdot g_{m} \cdot r_{m}$	A _{Fe} /A		A	H/A _{EB}			qs
109,3 kWh/(m	,	0,103 ×		1,7	'67 =		20 kWh/(m²a
Spezifisch	ner innerer Fremd	lwärmeanfa	all				
Trink	warmwasserbereitung		Heizung u	nd Lüftung			
$q_{\mathrm{WG,d}}$	$q_{WG,s}$		$\mathbf{q}_{HG,d}$	q _{HG}	,s		Σ17
		$'(m^2a) + 3$	31 kWh/(m²a) +	0 kW	/h/(m²a)	=	39 kWh/(m²
nnerer Fremd	wärmeanfall:						
Σ17	\dot{q}_i		t_{HP}				q_{l}
39 kWh/	$(m^2a) + 3,2$	W/m² ×	7080 h/a	× 0,001	=		62 kWh/(m²
Fremdwär	rmenutzungsgrad						,
					<u> </u>		
ا ر 62 لا	q _s (m²a) + 20 kWh/(m²a	2)) . / 19	q⊤ 35 kWh/(m²a) +	7/	q _∨ kWh/(m	20)) =	γ 0,31
Fremdwärmen		a)) ÷ (10	oo kwii/(iii a)	74	- KVVII/(III	(a)) =	0,51
f _η				γ			η
·η	0.90 × (1.0	- 0,2	×	0,317) =		0,84
Spozifiech	ne Nutzenergie de				/		5,0
•				9			
Q _T	q _V (m ² a) + 74 kWh/(m ² a)	η - 0,843 ×	q _I	(m²a) I	qs	(m2a)) I	q _h
					20 KVVII/((m²a)) +	190 kWh/(m²a
Speziliscr	ne Endenergie Wa	arme der n	eizung und	Luitung			
q _h			q _{s,H}		Σ11	4.00	Q _H
		Wh/(m²a) +	0 kWh/(m²	a))×		1,08 =	249 kWh/(m²a
q _h			Q _{s,H}	2))	Σ12	1 16 -	Q _{H,P}
	\ /	Wh/(m²a) +	0 kWh/(m²	a))×		1,16 =	267 kWh/(m²a
Spezifisch	ne Endenergie alle	er Warmee	nergien				
	qн			qw			
	249 kWh/			$Nh/(m^2a) =$			303 kWh/(m²
Spezifisch	ne Endenergie alle	er Hilfsener	gien				
		\dot{q}_{El}	t _{El}			а	q EI
	Zirkulation	0,09 W/m²		a × 0,001		=	0,720 kWh/(m²a
	Speicherladepumpe	0,09 W/m²				-	0,045 kWh/(m²a
Trinkwarm-	Erzeuger 1	0,09 W/m²			×	1,0 =	0,043 kWh/(m²a
	1	0,20 VV/III				1,5	5,575 187717(111 6
		W/m²	× h/s	$a \times 0.001$	×	=	kWh/(m²
	Erzeuger 2	W/m² W/m²	× h/s		×	=	· · · · · · · · · · · · · · · · · · ·
	Erzeuger 2 Erzeuger 3	W/m²	× h/a	a × 0,001	×		kWh/(m²a
	Erzeuger 2 Erzeuger 3 sonstige	W/m² W/m²	× h/s	a × 0,001 a × 0,001		=	kWh/(m²
	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe	W/m² W/m² 0,30 W/m²	× h/s × h/s × 6000 h/s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		= =	kWh/(m² kWh/(m² 1,800 kWh/(m²
bereitung	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe	W/m² W/m² 0,30 W/m² W/m²	× h/x × h/x × 6000 h/x × h/x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×	= = = = = = = = = = = = = = = = = = = =	kWh/(m² kWh/(m² 1,800 kWh/(m² kWh/(m²
bereitung Heizung und	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m²	× h/s × h/s × 6000 h/s × h/s × 3500 h/s	a × 0,001 a × 0,001 a × 0,001 a × 0,001 a × 0,001	×	= = =	kWh/(m² kWh/(m² 1,800 kWh/(m² kWh/(m² 0,175 kWh/(m²
bereitung Heizung und	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m²	× h/s × h/s × 6000 h/s × h/s × 3500 h/s × h/s	a × 0,001 a × 0,001 a × 0,001 a × 0,001 a × 0,001 a × 0,001	×	= = = = 1,0 =	kWh/(m² kWh/(m² 1,800 kWh/(m² kWh/(m² 0,175 kWh/(m² kWh/(m²
pereitung Heizung und	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m²	× h/s × h/s × 6000 h/s × h/s × 3500 h/s × h/s × h/s	a × 0,001 a × 0,001	× × × ×	= = = = 1,0 = =	kWh/(m² kWh/(m² 1,800 kWh/(m² kWh/(m² 0,175 kWh/(m² kWh/(m²
bereitung Heizung und	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m²	X	a × 0,001 a × 0,001	×	= = = 1,0 = = =	kWh/(m² kWh/(m² 1,800 kWh/(m² kWh/(m² 0,175 kWh/(m² kWh/(m² kWh/(m² kWh/(m²
bereitung Heizung und	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m² W/m²	× h/s × h/s × 6000 h/s × h/s × 3500 h/s × h/s × h/s	a × 0,001 a × 0,001	× × × × ×	= = = = = = = = = = = = = = = = = = =	kWh/(m² _i kWh/(m² _i 1,800 kWh/(m² _i kWh/(m² _i 0,175 kWh/(m² _i kWh/(m² _i kWh/(m² _i kWh/(m² _i
bereitung Heizung und	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige Endenergie der Hilfsene	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m² W/m² W/m² W/m²	X	a × 0,001 a × 0,001	× × × × × ×	= = = = = = = = = = = = = = = = = = =	kWh/(m²; kWh/(m²; 1,800 kWh/(m²; kWh/(m²; 0,175 kWh/(m²; kWh/(m²; kWh/(m²; kWh/(m²; kWh/(m²;
wasser- bereitung Heizung und Lüftung	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m² W/m² W/m² W/m²	X	a × 0,001 a × 0,001	× × × × × × ×	= = = = = = = = = = = = = = = = = = =	kWh/(m²; kWh/(m²; 1,800 kWh/(m²; kWh/(m²; 0,175 kWh/(m²; kWh/(m²; kWh/(m²; kWh/(m²; kWh/(m²; q _{EI,P}
bereitung Heizung und Lüftung	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige Endenergie der Hilfsene	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m² W/m² W/m² W/m²	X	a × 0,001 a × 0,001	× × × × × × × ×	= = = = = = = = = = = = = = = = = = =	kWh/(m²; kWh/(m²; 1,800 kWh/(m²; kWh/(m²; 0,175 kWh/(m²; kWh/(m²; kWh/(m²; kWh/(m²; kWh/(m²; q _{EI,P}
bereitung Heizung und Lüftung	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige Endenergie der Hilfsener Primärenergien der Hilfs	W/m² W/m² 0,30 W/m² 0,05 W/m² W/m² W/m² W/m² W/m² w/m² w/m² w/m² energien:	X	a × 0,001 a × 0,001 q _{EI} 3 kWh/(m ² i	× × × × × × × ×	= = = = = = = = = = = = = = = = = = =	kWh/(m²¿ kWh/(m²¿ 1,800 kWh/(m²¿ kWh/(m²²¿ 0,175 kWh/(m²²¿ kWh/(m²²¿ kWh/(m²²¿ kWh/(m²²¿ kWh/(m²²¿ kWh/(m²²¿ kWh/(m²²¿ kWh/(m²²¿ 9 kWh/(m²²¿
Heizung und Lüftung	Erzeuger 2 Erzeuger 3 sonstige Umwälzpumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Ventilator sonstige Endenergie der Hilfsene	W/m² W/m² 0,30 W/m² W/m² 0,05 W/m² W/m² W/m² W/m² W/m² W/m²	X	a × 0,001 a × 0,001 q _{El} 3 kWh/(m ² s	× × × × × × × ×	= = = = = = = = = = 3,0 = = = = = = = = = = = = = = = = = = =	kWh/(m²a kWh/(m²a kWh/(m²a 1,800 kWh/(m²a kWh/(m²a 0,175 kWh/(m²a kWh/(m²a kWh/(m²a kWh/(m²a g _{EI,P} 9 kWh/(m²a

Tabelle 2.1 MFH Energiebedarf bilanziert mit Gesamtenergiebilanz

3. Verbrauchsberechnung Jahr 2000

Bauweise:	mittelsch	Sonst	aes:	Ва	auiahr	· 1974				
	und Kompak	-			9					
A _{EB}		1098 m²		A_H		=		1940 m²		
h	=	2,5 m		A _{Fe}		=		199,9 m²		
Kompaktheit:		,			Fensterflächenanteil:					
A _H	A_{EB}		A _{EB}		A _{FE}	_	A _t			A _{FE} /A _H
1940 r			1,767		199,9 m ²	÷	19	940 m ² =		0,103
Heizzeit,	Temperatur									
ϑ_{HG} =	17 °	ϑ_{am}	=	=	6,9 °C	t _Y	=	365 d/a =		8760 h/a
ϑi	f _{ABS}	_	f _{REG}		ϑ_{im}					
21,0 °C ×	- , -	7 ×	1,03 =		21 °C	-111	=	284 d/a =		6816 h/a
Spezifisc	her Verteilve	erlust für	die Frinky	warmwa	sserbe	ereitur	ng			
		DN	L/A _{EB}	ġ	_	f_{BW}				
		10-15 :	0,055 m/m ²	× 8,6	W/m ×	1,0	=	0,473 W/m ²	=	0,473 W/m ²
	ständig	:	m/m²	X	W/m ×		=	W/m²	=	W/m²
	durchflossen	:	m/m²	×	W/m ×		=	W/m²	=	W/m²
in der		:	m/m²	X	W/m ×		=	W/m²	=	W/m²
gedämmten		10-15 :	0,182 m/m ²	× 3,4	W/m \times	1,0	=	0,619 W/m ²	=	0,619 W/m ²
Hülle	nicht ständig	:	m/m²	×	$W/m \times$		=	• • • • • • • • • • • • • • • • • • • •	=	W/m²
	durchflossen	:	m/m²		W/m ×		=	**/***	=	W/m²
		:	m/m²	X	W/m ×		=		=	W/m²
		22.22	0.400 / 3	40.0	10//	4.0	_		1=	1,092 W/m ²
	. 4 %	20-32 :	0,109 m/m ²		W/m ×	1,0	=	2,060 W/m ²		
	ständig durchflossen	<u>:</u>	m/m²	X	W/m ×		-	W/m²		
außerhalb	durchilossen	:	m/m² m/m²		W/m ×		=	W/m² W/m²		
der		:	m/m²	×	W/m ×			W/m²		
gedämmten	nicht ständig	•	m/m²	×	W/m ×			W/m²		
Hülle	durchflossen	:	m/m²	×	W/m ×			W/m²		
		:	m/m²	×	W/m ×		=	W/m²		
		-	211,121	,,	7,		Σ2=	3,152 W/m ²		
Wärmeverlust	der Verteilung:			Fremo	wärmean	fall aus '	√ertei	lung:		
Σ2	t_Y		$\mathbf{q}_{d,W}$	Σ		t _{HF}				$q_{\text{WG,d}}$
	imes 8760 h/a $ imes$		28 kWh/(m²a)		W/m² ×			× 0,001 =		7 kWh/(m²a)
Spezifisc	her Speiche	rverlust f	ür die Trir	าkwarm	wasse	rberei	tunç	g		
		V _S /A _{EB}		q _{SP}	f _{BW}					
			I/m² ×	W/I	×	=		W/m² =		W/m²
Innerhalb der	gedämmten		I/m² ×	W/I		=		W/m ² =		W/m²
hülle	_							↓ Σ3=	:	W/m²
O - wh lhd - w		0,91	1 l/m² ×	0,26 W/I	× 1	1,0 =	0,	,237 W/m ²		
außerhalb der hülle	gedammten		I/m² ×	W/I	×	=		W/m²		
						Σ4=		,237 W/m ²		
	der Speicherung:				wärmean		•	herung:		
Σ4	t _Y	0.004	Q _{s,W}	Σ		t _{HF}		0.004		Q _{WG,s}
0,237 W/m ²			2 kWh/(m²a)		W/m² ×			× 0,001 =		0 kWh/(m²a)
Deckungs			eraufwand	uszahle	n e	und		rimarene	rgi	efaktoren
Trinkwarr	nwasserber	eitung								
		а		∋ g,W	a	·e _{gW}		f_{P}		a⋅e _{gW} f _P
Erzeuger 1		1,	0 ×	1,12	=	1,12	×	1,07	=	1,20
Erzeuger 2			×		=		×		=	
Erzeuger 3			×		=		×		=	
				Σ5	=	1,12			=	1,20
Spezifisc	he Endener	gie Wärn	ne der Tri	nkwarm	wasse	rbere	itun	g		
q	w	$q_{d,W}$		$q_{s,W}$			Σ5			q_W
(19 k	:Wh/(m²a) +	28 kWh/(m²a) +	2 kWh/(m²a))×			1,12 =		55 kWh/(m²a)
q		q _{d,W}	2)	q _{s,W}	2 \		Σ6	1.00		Qw,P
(19 k	:Wh/(m²a) +	28 kWh/(m-a) +	2 kWh/(m²a))×			1,20 =		59 kWh/(m²a)

Spezifisch	ner Verteilve	erlust de	er Heiz	zung	und	Lüftung	g				
		DN	L/	A _{EB}		\dot{q}_L		f_{BH}			
		10-15	0,228	3 m/m²	×	13,9 W/m	×	1,0 =	3,169 W/m ²	=	3,169 W/m ²
	ständig			m/m²	×	W/m	×	=	W/m²	=	W/m²
	durchflossen			m/m²	×	W/m	×	=	W/m²	=	W/m²
in der				m/m²		W/m	_	=	W/m²	=	W/m²
gedämmten		10-15	0,182	2 m/m²		13,9 W/m		0,5 =	1,265 W/m ²	=	1,265 W/m ²
Hülle	nicht ständig	:		m/m²	×	W/m		=	W/m²	=	W/m²
	durchflossen	:		m/m²	×	W/m		=	W/m²	=	W/m²
		:		m/m²	X	W/m	×	=	W/m² ↓ Σ	=	4,434 W/m ²
	1	20-32 :	0.220	3 m/m²		5,9 W/m		1,0 =	1,345 W/m ²	7=	4,434 VV/M²
	ständia	20-32 .	0,220	m/m²	×	3,9 W/m		1,0 =	W/m ²		
	durchflossen			m/m²	_	W/m	_	=	W/m²		
außerhalb		:		m/m²	_	W/m	_	=	W/m²		
der		:		m/m²	_	W/m		=	W/m²		
gedämmten	nicht ständig			m/m²	_	W/m	_	=	W/m²		
Hülle	durchflossen			m/m²		W/m	_	=	W/m²		
	Ì	:		m/m²	×	W/m	×	=	W/m²		
								Σ8=	5,779 W/m ²		
Wärmeverlust	der Verteilung:				F	remdwärm	eanfa	all aus Verte	lung:		
Σ8	t _{HP}		$q_{d,H}$			Σ7		t _{HP}	_ =		$q_{HG,d}$
	6816 h/a × 0		39 kWh	, ,		4,43 W/m ²	×	6816 h/a	$\times 0,001 =$		30 kWh/(m²a)
Spezifisch	ner Speiche	erverlust	der H	leizui	ng						
		V _s /A	FB		\dot{q}_{SP}		f _{BH}				
				×		W/I ×		=	W/m² =		W/m²
Innerhalb der (gedämmten			×		W/I ×			W/m ² =	_	W/m²
hülle	l		1/111	^		VV/1 \			↓ Σ9=		W/m²
			I/m²	×		W/I ×		=	W/m²		******
außerhalb der	gedämmten			×		W/I ×		=	W/m²		
hülle	ı							Σ10=	W/m²		
Wärmeverlust	der Speicherung	:			F	remdwärm	eanfa	all aus Speic	herung:		
Σ10	t _{HP}		$q_{s,H}$			Σ9	×	t_{HP}	=		$q_{HG,s}$
W/m² ×	h/a × 0	,		/(m²a)		W/m²			$\times 0,001 =$		0 kWh/(m²a)
	anteile, E	rzeuger	aufwa	ndsz	ahle	n und	Pr	imärene	rgiefaktor	en	Heizung
und Lüftu	ng										
		а			e _{gH}		a⋅e	₽gH	f_{P}		a⋅e _{gH} ⋅f _P
Erzeuger 1			1,0 ×		1	,08 =		1,08 ×	1,07	=	1,16
Erzeuger 2			×			=		×		=	
Erzeuger 3			×			=		×		=	
						Σ11 =		1,08	Σ12	=	1,16
Spezifisch	ne Wärmev	erluste (der Tr	ansm	าissi						
	U	А		f _{MIN}			mittle	erer U-Wert:			
Wand	1,30 W/(m ² K)	× 732	m² ×	1,0 =	= 9	51,6 W/K		Σ14	Σ13		U_{m}
Kellerdecke/ Bodenplatte	0,70 W/(m ² K)	× 504	m² ×	0,5 =	= 1	76,4 W/K	2	092 W/K	1940 m²	=	1,08 W/(m ² K)
Fenster	2,55 W/(m ² K)	× 200	m² ×	1,0 =	= 5	10,0 W/K	Kom	paktheit:			
Dach/Decke	0,90 W/(m ² K)		m² ×	1,0 =		53,6 W/K		Σ13	A_{EB}		A_H/A_{EB}
	Σ13	= 1940	m²	Σ14 =	= 2	2092 W/K		1940 m ² ÷		=	1,767
Wärmeverlust	durch Transmiss	sion:				•					
U _m	ϑ _{im}	υθ an	1	A⊦	-/A _{EB}		t_{HP}				q⊤
1,08 W/(m ² K)			°C)×			67×6	816	h/a ×	0,001 =		183 kWh/(m²a)
Spezifisch	ne Wärmev	erluste	der Lü	ftunc]						
n _{nat}		1 _{Anl}		Rest					Δn		n
0,61/h	ODER (1/h +) =	C),6 1/	h +	0,3 1/h	=	0,9 1/h
Wärmeverlust	•										
h	ρ·C _P	ϑ_{im}	ϑ_{am}			n 0.0.4/5		t _{HP}	0.004		q _V
$2,5 \text{ m} \times$	0,34 × (21 °C -	6,9	°C)×		0,9 $1/h \times$		6816 h/a ×	U,UU1 =		74 kWh/(m²a)

O:6:			11				
Spezifisch	ner solarer Fremd	warmeanta		Α		r	
Süd		Wh/(m²a) ×	g 0,76 ×	48 · 1,68 m	2 ×	0,36 =	12355 kWh/
Ost		$Wh/(m^2a) \times$	0,76 ×	21 · 1,40 m		0,36 =	3016 kWh/
Nord		$Wh/(m^2a) \times$	0,76 ×	36 · 1,68 m		0,36 =	3475 kWh/
West		$Wh/(m^2a) \times$	0,76 ×	21 · 1,40 m		0,36 =	3016 kWh/
Dach		$Wh/(m^2a) \times$	0 ×	0 m ²		0,00	0 kWh/
Buon	O IX		Σ15 =	200 m		Σ16 =	21862 kWh/
Σ16	Σ1	5	G _m g _m r _m	Fensterfläch			Z 100Z KVVIII
	8621 kWh/a ÷	200 m ² =	109,3 kWh/m²a		Toriarito	 А _н	A_{Fe}/A_{H}
ODER:			,		m² ÷	1940 m²	
G_m	g _m	r _m	$G_m g_m r_m$,
kWh/(m		=	kWh/m²a	a			
Solarer Fremd							
$G_{m} \cdot g_{m} \cdot r_{m}$	A _{Fe} /A		A _H	_I /A _{EB}	_		qs
109,3 kWh/(m	,	0,103 ×		1,76	7 =		20 kWh/(m²a
Spezifisch	ner innerer Fremd	lwärmeanfa					
Trink	warmwasserbereitung		Heizung ur	nd Lüftung			
$q_{WG,d}$	$q_{WG,s}$		q _{HG,d}	$q_{HG,s}$			Σ17
		$'(m^2a) + 3$	0 kWh/(m²a) +	0 kWh	/(m²a)	=	37 kWh/(m²a
Innerer Fremd	wärmeanfall:						
Σ17	\dot{q}_i		t_{HP}				q_{l}
37 kWh/	$(m^2a) + 3.5$	W/m² ×	6816 h/a	× 0,001	=		62 kWh/(m²a
	menutzungsgrad			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			_				
q _l	q _s (m²a) + 20 kWh/(m²a	2)) . / 10	q _⊤ 3 kWh/(m²a) +		l∨ ‹Wh/(m [፡]	20)) -	γ 0,31
Fremdwärmen		a)) ÷ (10-	3 KVVII/(III-a) +	741	(VVII/(III	a)) –	0,31
rremowarmen f _η				27			n
ľη	0.90 × (1.0	- 0,2	×	γ 0,319) =		η 0,84
Spozifical	-7				/		0,01
•	ne Nutzenergie de			J			
Q _T	q _V	η	q _I		qs		Q _h
	(m²a) + 74 kWh/(m²a)				J KVVN/(m²a)) +	188 kWh/(m²a
Spezifiscr	ne Endenergie Wa	arme der He	eizung und	Luttung			
q _h			$q_{s,H}$		Σ11		qн
		Wh/(m²a) +	0 kWh/(m²a	a))×		1,08 =	245 kWh/(m²a
q _h			Q _{s,H}		Σ12	4.40	Q _{H,P}
		Wh/(m²a) +	0 kWh/(m²a	a))×		1,16 =	263 kWh/(m²a
Spezifisch	ne Endenergie alle	er Wärmeer	nergien				
	q _H			q_W			
	245 kWh/			$Vh/(m^2a) =$			300 kWh/(m²a
Spezifisch	ne Endenergie alle	er Hilfsener	gien				
•		$\dot{\textbf{q}}_{\text{El}}$	t _{El}			а	q EI
	Zirkulation		× 8000 h/a	a × 0,001		=	0,720 kWh/(m²a
	Speicherladepumpe		× 5000 h/a			=	0,045 kWh/(m²a
Trinkwarm-	Erzeuger 1	0,09 W/m²			×	1,0 =	0,045 kWh/(m²a
wasser-	Erzeuger 2		× h/a		×	1,0 =	kWh/(m²a
bereitung	Erzeuger 3		× h/a		×		kWh/(m²a
	sonstige		× h/a		^		kWh/(m²a
	Umwälzpumpe		× 6000 h/a				1,800 kWh/(m²a
	Speicherladepumpe			$a \times 0,001$			kWh/(m²a
	Erzeuger 1		× 3500 h/a		×	1,0 =	0,175 kWh/(m²
Heizung und	Erzeuger 2	W/m²			×	1,0 =	kWh/(m²a
Lüftung	Erzeuger 3		× h/a		×	=	kWh/(m²a
	Ventilator		× h/a		×	=	kWh/(m²
	sonstige		× h/a		^		kWh/(m²
			7 11/6	^ 0,001	qı		3 kWh/(m²
	Engenergie der Hilfsene						
	Endenergie der Hilfsene Primärenergien der Hilfs			α _{E1}	X	f _{DEI} =	UELD
	Primärenergien der Hilfs			q _{El} 3 kWh/(m²a)	×	*F,EI	q _{EI,P} 9 kWh/(m²a
Spazificek	Primärenergien der Hilfs						
Spezifisch	Primärenergien der Hilfs ne Primärenergie	energien:		3 kWh/(m²a)			9 kWh/(m²a
·	Primärenergien der Hilfs		23) +	3 kWh/(m²a)		3,0 =	9 kWh/(m²a 9 kWh/(m²a 9 331 kWh/(m²a

Tabelle 3.1 MFH Verbrauchsberechnung 2000 bilanziert mit Gesamtenergiebilanz

4. Verbrauchsberechnung bereinigtes Standardjahr

Bauweise:	Sons	Sonstiges: Baujahr 1974									
	mittelschv und Kompak	-			gee.			,			
A _{EB}		1098 m²		A _H		-	=		1940 m²		
h	=	2,5 m		A _{Fe}		-	=		199,9 m²		
Kompaktheit:		,			terfläche	enant	eil:		,		
A _H	A _{EB}		A _{EB}		A _{FE}	0		A _H	10 0		A _{FE} /A _H
1940 r			1,767		199,9 ו	m² -	÷	194	40 m ² =		0,103
Heizzeit,	Temperatur										
ϑ_{HG} =	17 °	ϑ_{am}	=		6,3 °	°C t	_Y =		365 d/a =		8760 h/a
ϑ _i	f _{ABS}	7	f _{REG}		ϑim		_		204 4/		7000 h/s
21,0 °C ×	- , -	7 ×	1,03 =		21 °		HP =		284 d/a =		7080 h/a
Spezifisci	her Verteilve	eriust tur	1	warmw	asser	oer	eitun	9			
		DN	L/A _{EB}		AL		f_{BW}				
		10-15 :	0,055 m/m ²			×	1,0	= (0,473 W/m ²	=	0,473 W/m ²
	ständig	:	m/m²			×		=	W/m²	=	W/m²
	durchflossen	:	m/m²			×		=	W/m²	=	W/m²
in der		:	m/m²	×		×		=	W/m²	=	W/m²
gedämmten Hülle		10-15 :	0,182 m/m ²			×	.,	_	0,619 W/m ²	=	0,619 W/m²
Tiulie	nicht ständig durchflossen	<u> </u>	m/m² m/m²	×		X		=	W/m² W/m²	=	W/m² W/m²
	duicillosscri	:	m/m²			×		= +	W/m²	=	W/m²
		•	111/111	^	V V / I I I	^		_		1=	1,092 W/m²
		20-32 :	0,109 m/m ²	× 18.	9 W/m	×	1,0	= 2	2,060 W/m²		1,002 11,111
	ständig	:	m/m²	×		×		=	W/m²		
	durchflossen	:	m/m²	×	W/m	×		=	W/m²		
außerhalb der		:	m/m²	×	W/m	×		=	W/m²		
gedämmten		:	m/m²	×		×		=	W/m²		
Hülle	nicht ständig	:	m/m²	×		×		=	W/m²		
	durchflossen	:	m/m²	X		×		=	W/m²		
		:	m/m²	×	W/m	×		= 2= 3	W/m ² 3,152 W/m ²		
Wärmeverlust	der Verteilung:			Frem	dwärme	anfal			,		
$\Sigma 2$	t _v		$q_{d,W}$		Σ1	amai	t _{HP}	JI CHIC	ing.		q wg,d
3,152 W/m ²	× 8760 h/a ×	0,001= 2	28 kWh/(m²a)	1,09	2 W/m²	×	7080 h	n/a >	< 0,001 =		8 kWh/(m²a)
Spezifisch	her Speiche	rverlust f	ür die Trir	าkwarn	าพลรร	erb	ereiti	una			
		V _S /A _{EB}		q _{SP}		BW					
		A 21 LEB	I/m² ×	W/I		BVV	= 1		W/m² =		W/m²
Innerhalb der	gedämmten		I/m² ×	W/I					W/m ² =		W/m²
hülle	L		1/111 🔨	V V / I	^				↓ Σ3=		W/m²
		0,91	1 l/m² ×	0,26 W/I	×	1,0	=	0,2	237 W/m ²		******
außerhalb der hülle	gedämmten	<u> </u>	I/m² ×	W/I			=		W/m²		
Tiulie	_						Σ4=	0,2	237 W/m ²		
	der Speicherung				dwärme	anfal		peich	erung:		
Σ4	t _Y	0.004	Q _{s,W}		$\Sigma 3$		t _{HP}	. / -	0.004		q _{WG,s} 0 kWh/(m²a)
0,237 W/m ²			2 kWh/(m²a)) W/m²				< 0,001 =		, ,
Deckungs			eraufwand	uszanle	en	ur	10	ТР	nmarene	erg	iefaktoren
Trinkwarr	nwasserber	eitung									
		а		₽ _{g,W}		a⋅e _g			f _P		a⋅e _{gW} f _P
Erzeuger 1		1,	0 ×	1,12	=		1,12	×	1,07	=	1,20
Erzeuger 2			×		=			×		=	
Erzeuger 3			X	∇F	=		1,12	×	20	=	1.20
Chazifias	ho Endener	aio Männ	oo dor Tri	Σ5	214/6-5	a all	-	1100	Σ6	=	1,20
	he Endener	_	ie der Tri		IWass	serio					
q,		98 kWb//	m²a) ±	q _{s,W}	/(m²a)			Σ5	1 12 -		q _W
`	Wh/(m²a) +	28 kWh/(iii a) +	2 kWh	(III-a)	×		Σ6	1,12 =		55 kWh/(m²a)
(19 k	w Wh/(m²a) +	q _{d,W} 28 kWh/(m²a) +	q _{s,w} 2 kWh	/(m²a)	×		۷۵	1,20 =		q _{w,P} 59 kWh/(m²a)
, , , , , , ,	., .,		- /		/				-		, (🎿)

Spezifisch	ner Verteilv	erlust d	er Hei	zung	und	l Lüftung	9				
		DN	L/	A _{EB}		q̈́L		f_{BH}			
		10-15	0,22	8 m/m²	×	13,9 W/m	×	1,0 =	3,169 W/m ²	=	3,169 W/m ²
	ständig		:	m/m²	×	W/m	×	=	W/m²	=	W/m²
	durchflossen			m/m²	×	W/m	×	=	W/m²	=	W/m²
in der				m/m²	×	W/m	×	=	W/m²	=	W/m²
gedämmten		10-15	0,182	2 m/m²	×	13,9 W/m	×	0,5 =	1,265 W/m ²	=	1,265 W/m ²
Hülle	nicht ständig			m/m²	×	W/m		=	W/m²	=	W/m²
	durchflossen			m/m²	×	W/m	_	=	W/m²	=	W/m²
				m/m²	×	W/m	×	=	W/m²	=	W/m²
	1									:7=	4,434 W/m ²
		20-32	0,22	8 m/m²		5,9 W/m		1,0 =	1,345 W/m ²		
	ständig			m/m²	X	W/m	_	=	W/m²		
außerhalb	durchflossen		•	m/m²	_	W/m	_	=	W/m²		
der				m/m²	_	W/m	_	=	W/m²		
gedämmten				m/m²		W/m		=	W/m²		
Hülle	nicht ständig durchflossen			m/m²		W/m	_	=	W/m²		
	durchilossen			m/m²	_	W/m	_	=	W/m²		
				m/m²	×	W/m	X	Σ8=	W/m ² 5,779 W/m ²		
Wärmeverlust	der Verteilung:					Fromdwärm	eanf.	∠o all aus Verte	,		
Σ8	t _{HP}		q _{d,h}		·	Σ7	Carne	ali aus veite t _{HP}	= =		Q HG,d
	7080 h/a × 0	.001 =	41 kWł			4,43 W/m ²	×		a × 0,001 =		31 kWh/(m²a)
	ner Speiche	,		, ,	na	1, 10 11,	- 1				()
Opezilisci	iei opeiciie			ICIZUI			_				
		V _S /A	EB		\dot{q}_{SP}		f_{BH}				
Innorhalb dor	aodämmton		l/m²	×		W/I ×		=	W/m² =		W/m²
Innerhalb der o	gedammen		l/m²	×		W/I ×		=	W/m ² =		W/m²
Tidilo									↓ Σ9=	= []	W/m²
außerhalb der	gedämmten		l/m²	×		W/I ×		=	W/m²		
hülle	gedammen		l/m²	×		W/I ×		=	W/m²		
								Σ10=	W/m²		
	der Speicherung	:	_					all aus Speic	herung:		_
Σ 10 W/m ² ×	t_{HP} h/a \times 0	001 -	q _{s,t}	n/(m²a)		Σ9 W/m²	×	t _{HP}	= a × 0.001 =		q _{HG,s} 0 kWh/(m²a)
		,		, ,					-,		
	santeile, E	rzeuger	aurwa	nasz	anie	en una	Pr	ımarene	rgietaktor	en	Heizung
und Lüftu	ng										
		а			e_{gH}		a⋅e	∋ _{gH}	f_{P}		a⋅e _{gH} ⋅f _P
Erzeuger 1			1,0 ×		1	1,08 =		1,08 ×	1,07	=	1,16
Erzeuger 2			×			=		×		=	
Erzeuger 3			×			=		×		=	
						Σ11 =		1,08	Σ12	=	1,16
Spezifisch	ne Wärmev	erluste	der Tr	ansm	าissi	on					
·	U	Α		f_{MIN}			mittle	erer U-Wert:			
Wand	1,30 W/(m ² K)	× 732	m² ×	1,0 =	= 9	51,6 W/K		Σ14	Σ13		U_{m}
Kellerdecke/	0,70 W/(m²K)		· m² ×	0,5 =	- 1	76,4 W/K		2092 W/K	1940 m²	=	1,08 W/(m ² K)
Bodenplatte	, ,								1940 111		1,00 W/(III K)
Fenster	2,55 W/(m ² K)		m² ×	1,0 =			Kom	paktheit:			
Dach/Decke	0,90 W/(m ² K)		m² ×	1,0 =	_	53,6 W/K		Σ13	A _{EB}		A _H /A _{EB}
1000	Σ13	= 1940	m²	Σ14 =	=	2092 W/K		1940 m ² ÷	1098 m²	=	1,767
	durch Transmiss				/ ^						_
U _m	ϑ im	ϑ ar	m		176	:7 v = -	t _{HP}	h/o	0.001 -		9T
1,08 W/(m²K)			3°C)×			67×7	7080	h/a ×	0,001 =		199 kWh/(m²a)
Spezifisch	ne Wärmev	erluste	der Lü	iftung)						
n _{nat}		1 _{Anl}	n	Rest					Δn	_	n
0,61/h		1/h +		1/h) =	C),6 1/	h +	0,3 1/h	=	0,9 1/h
	durch Lüftung:	0	0			_		4			
h 25 m v	ρ·C _P	ϑ _{im}	ϑ _{am}	°C \		n 0.0.1/b		t _{HP}	0.001 -		Q _V 80 k\\/h/(m²a)
2,5 m ×	0,34 × (21 °C -	0,3	°C)×		0,9 1/h ×		7080 h/a ×	0,001 =		80 kWh/(m²a)

	G		g	Α		r	
Süd	560 k	:Wh/(m²a) ×	0,76 ×	48 · 1,68 m	1 ² ×	0,36 =	12355 kWh
Ost	375 k	:Wh/(m²a) ×	0,76 ×	21 · 1,40 m	l² ×	0,36 =	
Nord	210 k	:Wh/(m²a) ×	0,76 ×	36 · 1,68 m	1 ² ×	0,36 =	3475 kWh
West	375 k	:Wh/(m²a) ×	0,76 ×	21 · 1,40 m	l² ×	0,36 =	3016 kWh
Dach	0 k	:Wh/(m²a) ×	0 ×	0 m	l² ×	0 =	0 kWh
		ì	Σ15 =	200 m	l ²	Σ16 =	21862 kWh
Σ16	Σ1	5	G _m g _m r _m	Fensterfläc	henante	il:	
218	621 kWh/a ÷	200 m ² =	109,3 kWh/m²a	Σ15		A_{H}	A_{Fe}/A_{H}
ODER:				200	m² ÷	1940 m ²	2 = 0,10
G_{m}	g _m	r _m	$G_m g_m r_m$				
kWh/(m	²a) × ×	=	kWh/m²a				
Solarer Fremd	värmeanfall:						
$G_{m'} g_{m'} r_{m}$	A _{Fe} /A	Д Н	A_{H}	/A _{EB}			$q_{\mathtt{S}}$
109,3 kWh/(m	²a) ×	0,103 ×		1,70	67 =		20 kWh/(m ²
Spezifisch	er innerer Fremd	lwärmeanfa	ll .				
	varmwasserbereitung	wanneama	Heizung un	d Lüftung			
q _{wg.d}	· ·		~	q _{HG,s}			Σ17
	$q_{WG,s}$ 1/(m ² a) + 0 kWh/	/(m²a) + 3	q _{HG,d} 1 kWh/(m²a) +		h/(m²a)	=	39 kWh/(m ²
nerer Fremdy		(111 a)	i kvvii/(iii a)	O KVVI	ii/(iii a)		33 KVVII/(III
							_
Σ17	q _i		t _{HP}				qı
39 kWh/($(m^2a) + 3,5$	W/m² ×	7080 h/a	< 0,001	=		64 kWh/(m
remdwär	menutzungsgrad						
qı	qs		qт		q∨		γ
64 kWh/(a)) ÷ (190	9 kWh/(m²a) +		ฯ≀ kWh/(m³	²a))=	0,3
remdwärmeni		u)) . (10.	5 KVVII/(III a)	00	124411/(111	α, ,	0,0
f _η	atzurigagrad.			2/			n
·η	0.90 × (1.0	- 0,2	×	γ 0,301) =		η 0.8
	, ,			•) –		0,0
pezifisch	e Nutzenergie de	er Heizung L	ına Luttung	}			
q⊤	q _V	η	qı		qs		q_h
	$(m^2a) + 80 \text{ kWh/}(m^2a)$				20 kWh/(i	m²a))+	212 kWh/(m
					20 kWh/(m²a)) +	212 kWh/(m
Spezifisch	e Endenergie Wa	ärme der He	eizung und		·	m²a)) +	·
pezifisch	e Endenergie Wa	ärme der He ⊩	eizung und	Lüftung	20 kWh/(ι Σ11		q_H
pezifisch q _h 212 kV	re Endenergie Wa q _{d,} Vh/(m²a) + 41 kV	ärme der He ^H Wh/(m²a) +	eizung und q _{s,H} 0 kWh/(m²a	Lüftung	Σ11	m ² a)) +	q _H 273 kWh/(m
pezifisch q _h 212 kV q _h	yh/(m²a) + 41 kV qd,	ärme der He ^H Wh/(m²a) +	Q _{s,H} 0 kWh/(m²a q _{s,H}	Lüftung))×	·	1,08 =	q _н 273 kWh/(m q _{н,Р}
pezifisch q _h 212 kV q _h 218 kV	ve Endenergie Way $Vh/(m^2a) + 41 kV$ $Vh/(m^2a) + 41 kV$ $Vh/(m^2a) + 41 kV$	ärme der He H Wh/(m²a) + H Wh/(m²a) +	q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a	Lüftung))×	Σ11		q _н 273 kWh/(m q _{н,Р}
pezifisch q _h 212 kV q _h 218 kV	yh/(m²a) + 41 kV qd,	ärme der He H Wh/(m²a) + H Wh/(m²a) +	q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a	Lüftung))×	Σ11	1,08 =	q _н 273 kWh/(m q _{н,Р}
pezifisch q _h 212 kV q _h 218 kV	vh/(m²a) + 41 kV Vh/(m²a) + 41 kV Vh/(m²a) + 41 kV de Endenergie allo	ärme der He Mh/(m²a) + H Nh/(m²a) + er Wärmeer	eizung und q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a nergien	Lüftung)) ×)) × qw	Σ11	1,08 =	q _н 273 kWh/(m q _{н.Р} 293 kWh/(m
Spezifisch q _h 212 kV q _h 218 kV Spezifisch	vh/(m²a) + 41 kV Vh/(m²a) + 41 kV Vh/(m²a) + 41 kV ve Endenergie allo q _H	ärme der He H Mh/(m²a) +	eizung und q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a nergien 55 kW	Lüftung))×))×	Σ11	1,08 =	q _н 273 kWh/(m q _{н.Р} 293 kWh/(m
Spezifisch q _h 212 kV q _h 218 kV Spezifisch	vh/(m²a) + 41 kV Vh/(m²a) + 41 kV Vh/(m²a) + 41 kV de Endenergie allo	ärme der He H Mh/(m²a) +	eizung und q _{s.H} 0 kWh/(m²a q _{s.H} 0 kWh/(m²a nergien 55 kW	Lüftung)) ×)) × qw	Σ11	1,08 =	q _н 273 kWh/(m q _{н.Р} 293 kWh/(m
Spezifisch q _h 212 kV q _h 218 kV Spezifisch	vh/(m²a) + 41 kV Vh/(m²a) + 41 kV Vh/(m²a) + 41 kV ve Endenergie allo q _H	ärme der He H Mh/(m²a) + H Mh/(m²a) + er Wärmeer Marmeer H H H H H H H H H H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW	Lüftung)) ×)) × qw	Σ11	1,08 =	q _H 273 kWh/(m q _{H,P} 293 kWh/(m
Spezifisch q _h 212 kV q _h 218 kV Spezifisch	yh/(m²a) + 41 ky yh/(m²a) + 41 ky yh/(m²a) + 41 ky te Endenergie allo q _H 273 kWh/ te Endenergie allo	ärme der He H Mh/(m²a) +	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW	Lüftung)) ×)) ×	Σ11	1,08 = 1,16 = a	273 kWh/(m
Spezifisch q _h 212 kV q _h 218 kV Spezifisch	yh/(m²a) + 41 ky yh/(m²a) + 41 ky yh/(m²a) + 41 ky te Endenergie allo q _H 273 kWh/ te Endenergie allo zirkulation	ärme der He H Mh/(m²a) + H Mh/(m²a) + er Wärmeer (m²a) + er Hilfsener q 0,09 W/m²	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a	Lüftung (a)) × (b)) × (c) q _W (d) dy (d) dy (m²a) =	Σ11	1,08 = 1,16 = a = =	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m q _{EI} 0,720 kWh/(m
Spezifisch qh 212 kV qh 218 kV Spezifisch Spezifisch	Tirkulation Phyloge Endenergie Ward Qd, Vh/(m²a) + 41 kV Qd, Vh	ärme der He H	eizung und	Lüftung (a)) × (b)) × (c) q _w (d) dy (d) q _w (d) q _w (e) q _w (e) q _w (f) q _w (Σ11	1,08 = 1,16 = 1 a = = = = = = = = = = = = = = = = =	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch pezifisch pezifisch	Tirkulation Speicherladepumpe E Endenergie W qd, 41 kV qd, 41 kV qd, 41 kV qd, 273 kWh/ e Endenergie alle Zirkulation Speicherladepumpe Erzeuger 1	ärme der He H	eizung und	Lüftung)) ×	Σ11 Σ12 ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m 0,070 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch crinkwarm-asser-	The Endenergie Water States of the Endenergie allows and the Endenergie allows are Endenergie allows as the Endenergie allows are Endenergie allows are Endenergie allows are Endenergie allows as the Endenergie allows are the E	ärme der He H	eizung und	Lüftung)) × vh/(m²a) =	Σ11 Σ12 × ×	1,08 = 1,16 = 1,16 = 1,0	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m 0,070 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch crinkwarm-asser-	Tirkulation Speicherladepumpe Erzeuger 2 Erzeuger 3	ärme der He H	eizung und	Lüftung (a) (b) (c) (c) (b) (c) (c) (c) (Σ11 Σ12 ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m 0,070 kWh/(m kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch crinkwarm-asser-	Tirkulation Speicherladepumpe Erzeuger 2 Erzeuger 3 Sonstige	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × 500 h/a × h/a × h/a × h/a	Lüftung (a) (b) (c) (c) (b) (c) (c) (c) (Σ11 Σ12 × ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m 0,070 kWh/(m kWh/(m kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch crinkwarm-asser-	Tirkulation Speicherladepumpe Erzeuger 1 Erzeuger 3 Sonstige Uh/(m²a) + 41 kV qd. 41 kV qd. 41 kV qd. 273 kWh/ e Endenergie alle	ärme der He H	eizung und	Lüftung (a) (b) (c) (c) (b) (c) (c) (c) (Σ11 Σ12 × ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m 0,070 kWh/(m kWh/(m kWh/(m kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch crinkwarm-asser-	Tirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Sonstige Uh//(m²a) + 41 kV qd. 41 kV qd. 41 kV qd. 273 kWh/ e Endenergie alle 273 kWh/ e Endenergie alle Zirkulation Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 3 Sonstige Umwälzpumpe Speicherladepumpe	ärme der He H Wh/(m²a) + H Wh/(m²a) + er Wärmeer (m²a) + er Hilfsener Question	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × h/a × h/a × h/a × 6000 h/a × h/a	Lüftung (a) (b) (c) (b) (c) (c) (c) (c) (c)	Σ11 Σ12 × × ×	1,08 = 1,16 = 1,16 = 1,0	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m 0,070 kWh/(m kWh/(m kWh/(m kWh/(m kWh/(m kWh/(m
pezifisch 212 kV qh 218 kV pezifisch pezifisch pezifisch pezifisch pezifisch	Te Endenergie Ward And Andrews	ärme der He H Wh/(m²a) + H Wh/(m²a) + er Wärmeer (m²a) + er Hilfsener 0,09 W/m² 0,09 W/m² 0,20 W/m² W/m² W/m² W/m² 0,30 W/m² W/m² 0,05 W/m²	eizung und	Lüftung A	Σ11 Σ12 × ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m kWh/(m kWh/(m kWh/(m kWh/(m kWh/(m 0,175 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch rinkwarm- asser- ereitung eizung und	The Endenergie Water Speicherladepumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 1 Erzeuger 2 Erzeuger 3 Sonstige Umwälzpumpe Erzeuger 1 Erzeuger 2 Erzeuger 1 Erzeuger 2 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 1 Erzeuger 2 Erzeuger 1 Erzeuger 2	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × h/a × h/a × h/a × 6000 h/a × 1/a	Lüftung A	Σ11 Σ12 × × ×	1,08 = 1,16 = 1,16 = 1,0	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch cinkwarm-asser-ereitung eizung und	Te Endenergie Ward And Andrews	ärme der He H	eizung und	Lüftung A	Σ11 Σ12 × × ×	1,08 = 1,16 = 1,16 = 1,0	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch crinkwarm- asser- ereitung eizung und	The Endenergie Water Speicherladepumpe Speicherladepumpe Erzeuger 1 Erzeuger 2 Erzeuger 1 Erzeuger 2 Erzeuger 3 Sonstige Umwälzpumpe Erzeuger 1 Erzeuger 2 Erzeuger 1 Erzeuger 2 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 3 Erzeuger 1 Erzeuger 2 Erzeuger 1 Erzeuger 2	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × h/a × h/a × h/a × 6000 h/a × 1/a	Lüftung (a) (b) (c) (c) (b) (c) (c) (c) (Σ11 Σ12 × × × × ×	1,08 = 1,16 = 1,16 = 1,0	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch pezifisch pezifisch pezifisch pezifisch	Te Endenergie Ward And Andrews	ärme der He H	eizung und	Lüftung (a)) × (b)) × (c) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	Σ11 Σ12 Χ Χ Χ Χ Χ Χ	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m kWh/(m kWh/(m kWh/(m kWh/(m kWh/(m 0,175 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch rinkwarm- asser- ereitung eizung und	re Endenergie Ward Andrew Andr	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × 500 h/a × h/a × h/a × h/a × h/a × 1000 h/a	Lüftung (a)) × (b)) × (c) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	Σ11 Σ12 Χ Χ Χ Χ Χ Χ	1,08 = 1,16 = 1,16 = 1,10 = = 1,0 = = 1,0 = = = 1,0 = = = 1,0 = = = 1,0 = = = = 1,0 = = = = 1,0 = = = = = = = = = = = = =	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch rinkwarm- asser- ereitung eizung und	Te Endenergie Ward Andrew Andr	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × 500 h/a × h/a × h/a × h/a × h/a × 1000 h/a	Lüftung (a)) × (b)) × (c)) (c)	Σ11 Σ12 Χ Χ Χ Χ Χ Χ	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch spezifisch cinkwarm-asser-ereitung eizung und	qd. Vh/(m²a) + 41 kV qd. Vh/(m²a) + 273 kWh/ qd. 273 kWh/ q	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × 500 h/a × h/a × h/a × h/a × h/a × 1000 h/a	Lüftung (a)) × (b)) × (c)) × (d)) × (d)) × (d) (d) × (d) (d) × (d) (d) × (d) (d) (d) × (d)	Σ11 Σ12 × × × × × × × × ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV pezifisch pezifisch pezifisch inkwarm- asser- ereitung eizung und üftung	re Endenergie Ward Andrew Andr	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × 500 h/a × h/a × h/a × h/a × h/a × 1000 h/a	Lüftung (a)) × (b)) × (c)) (c)	Σ11 Σ12 × × × × × × × × ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m
pezifisch 212 kV qh 218 kV Spezifisch pezifisch rinkwarm- asser- ereitung eizung und üftung	qd. Vh/(m²a) + 41 kV qd. Vh/(m²a) + 273 kWh/ qd. 273 kWh/ q	ärme der He H	eizung und q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a q _{s,H} 0 kWh/(m²a nergien 55 kW gien t _{EI} × 8000 h/a × 500 h/a × 500 h/a × h/a × h/a × h/a × h/a × 1000 h/a	Lüftung (a)) × (b)) × (c)) × (d)) × (d)) × (d) (d) × (d) (d) × (d) (d) × (d) (d) (d) × (d)	Σ11 Σ12 × × × × × × × × ×	1,08 = 1,16 = 1,	q _H 273 kWh/(m q _{H,P} 293 kWh/(m 328 kWh/(m 328 kWh/(m 0,720 kWh/(m 0,045 kWh/(m

Tabelle 4.1 MFH Energiebedarf nach Modernisierung bilanziert mit Gesamtenergiebilanz

5. Wirtschaftlichkeit

Maßnahme	Beschreibung
Fassadendämmung	Dämmung der Außenfassade mit einem 120 mm Wärmedämmverbundsystem im
Fassaderidaminding	Rahmen einer sowieso fälligen Außenputzerneuerung.
Dachdämmung	Dämmung des Flachdaches (Warmdaches) mit einer Dämmung der
Dacidaminung	Dämmstoffgruppe 040; Filtervlies und Kiesschüttung
	Ersatz der 28 Jahre alten doppelt verglasten Fenster mit Holzrahmen durch Fenster
Fenstererneuerung	mit doppelter Wärmeschutzverglasung und Kunststoffrahmen. Die Reparatur eines
	Teils der Fenster auf der Wetterseite muss wegen Undichtigkeit sowieso stattfinden.
	Nachträgliche Wärmedämmung der bisher unisolierten Steigestränge für die
Leitungsdämmung	Heizwasserverteilung (250 m) auf EnEV-Niveau. Die in den Ecken der Räume
	verlaufenden Steigleitungen werden mit Gipskarton verkleidet.
	zusätzlich: Berechnung der Wirtschaftlichkeit für den 1994 als Ersatz für den defekten
Kesselaustausch	Konstanttemperaturkessel neu installierten Niedertemperaturkessel zu damaligen
	Preisen. Kesselleistung 100 kW.

Tabelle 5.1 Beschreibung von Sanierungsmaßnahmen im MFH

Maßnahme	Investitionskosten	Energieeinsparung
Fassadendämmung	Die Maßnahme kostet insgesamt 90 €/m² Wandfläche. Die Mehrkosten allein für den Wärmeschutz werden mit 60 €/m² angenommen. Damit belaufen sich die anrechenbaren Gesamtkosten auf rund 44000 €.	86 kWh/(m²a), das heißt 94428 kWh/a.
Dachdämmung	Die Maßnahme kosten etwa 160 €/m² Dachfläche. Die Mehrkosten für den Wärmeschutz betragen Mehrkosten Dämmung 60 €/m². Damit betragen die anrechenbaren Gesamtkosten rund 30000 €.	36 kWh/(m²a), das heißt 39528 kWh/a.
Fenstererneuerung	Die ohnehin fällige Fenstererneuerung kostet 450 €/m² Fensterfläche. Der Anteil, der allein für den zusätzlichen Wärmeschutz anfällt, ist schwer zu definieren. Es wird von 50 €/m² ausgegangen. Dies entspricht 10000 € anrechenbaren Kosten.	39 kWh/(m²a), das heißt 42822 kWh/a.
Leitungsdämmung	Die Gesamtkosten der Maßnahme betragen 17 €/m Rohr. Das bedeutet anrechenbare Kosten von 4250 €.	11 kWh/(m²a), das heißt 12078 kWh/a.
Kesselaustausch	Der Kesselaustausch von Konstant- aus Niedertemperaturkessel wird mit seiner kompletten Summe angesetzt. Somit beträgt die Investition 15500 €. Auf eine Mehrkostenbetrachtung wird bewusst verzichtet.	70 MWh/a.

Tabelle 5.2 Investitionskosten und Energieeinsparung für das MFH

Maßnahme	Kalkulationszins p, in [1/a]	Betrachtungszeitraum n, in [a]	Preisteuerung für Wartung und Unterhalt su, in [1/a]	Annuität a _{p.n} , in [1/a]	Investition I, in [€]	Wartungssatz, in [1/a] von I	heutige Kosten für Wartung und Unterhalt K _{u,0} , in [€/a]	Mittelwertfaktor der Preisteuerung m _u , in [-]	mittlere jährliche Kosten für Wartung und Unterhalt Z = $K_{u,m}$, in $[\ell/a]$	eingesparte Energie Eo-Es, in [kWh/a]	äquivalenter Energiepreis k _{EIN} , in [€/kWh]
Fassadendämmung	0,06	30	0,02	0,073	44000	0,010	440	1,27	559	94428	0,040
Dachdämmung	0,06	25	0,02	0,078	30000	0,010	300	1,23	369	39528	0,069
Fenstererneuerung	0,06	25	0,02	0,078	10000	0,015	150	1,23	185	42822	0,023
Leitungsdämmung	0,06	15	0,02	0,103	4250	0,010	43	1,15	49	12078	0,040
Kesselaustausch	0,08	15	0,02	0,117	15500	0,035	543	1,14	618	70000	0,035

Tabelle 5.3 Äquivalenter Energiepreis k_{EIN} für Sanierungsmaßnahmen

	Energiepreis zum Investitionsz eitpunkt k _{e,0} , in [€/kWh _{HU}]	Betrach tungsze itraum n, in [a]	Kalkulati onszins p, in [1/a]	Teuerung der Energ [1/a]		Mittelwert Energieve ng m _e , in [rteueru		· jährlicher oreis k _{e,m} , h _{HU}]
Gas 2002	0,035	30	0,06	min:	0,03	min:	1,44	min:	0,050
				mittel:	0,06	mittel:		mittel:	0,076
				max:	0,09	max:	3,46	max:	0,121
		25		min:	0,03	min:	1,38	min:	0,048
				mittel:	0,06	mittel:	1,96	mittel:	0,069
				max:	0,09	max:	2,87	max:	0,100
		15		min:	0,03	min:	1,24	min:	0,043
				mittel:	0,06	mittel:	1,54	mittel:	0,054
				max:	0,09	max:	1,94	max:	0,068
Gas 1994	0,030	15	0,08	min:	0,03	min:	1,22	min:	0,037
				mittel:	0,06	mittel:	1,51	mittel:	0,045
				max:	0,09	max:	1,89	max:	0,057

Tabelle 5.4 Mittlerer jährlicher Energiepreis für Sanierungsmaßnahmen

Maßnahme	äquivalenter Energiepreis k _{EIN} ,		lerer jährlic reis k _{e,m} , in		Ergebnis	
Washanne	in [€/kWh]	minimal 3 %/a	mittel 6 %/a	maximal 9 %/a	Ergebilis	
Fassadendämmung	0,040	0,050	0,076	0,121	wirtschaftlich	
Dachdämmung	0,069	0,048	0,069	0,100	bei mittlerer und hoher Energiepreisteuerung wirtschaftlich	
Fenstererneuerung	0,023	0,048	0,069	0,100	wirtschaftlich	
Leitungsdämmung	0,040	0,043	0,054	0,068	bei hoher Energiepreissteigerung wirtschaftlich	
Kesselaustausch	0,035	0,037	0,045	0,057	wirtschaftlich	

Tabelle 5.5 Überprüfung der Wirtschaftlichkeit von Sanierungsmaßnahmen im MFH

Quelle: Jagnow, Horschler, Wolff; Die neue Energieeinsparverordnung 2002; Deutscher Wirtschaftsdienst; Köln; 2002