Handbuch zum Programm "Optimierung von Heizungsanlagen - Hydraulischer Abgleich"

Abschnitt I	Programm	S. 03-24	
Abschnitt II	Arbeitshilfen	S. 25-50	
Abschnitt III	Aufnahmeformulare	S. 51-53	

INHALT

Abschnitt	: I: Programm	3
1	Installation	3
2	Einführung in das Programm	5
21	Datenaufnahme	
2.2.	Übersichtsschema des Berechnungsablaufs.	6
23	Benötigte Ausgangsdaten – Aufnahmeformulare	7
2.4.	Übersicht des Programmablaufs	
2.5.	Frläuterung der Fingaben	10
2.6.	Datenausgabe	23
3	Im Programm hinterlegte U-Werte	24
4	Programmweiterentwicklung, Updates	24
Abaabaitt	TI. Arhaitabilfan	25
ADSCHNILL	11: Arbeitsniiren	25
1	Marktübliche, voreinstellbare Thermostatventile	25
2	Erkennungsmerkmale voreinstellbarer Thermostatventile	26
2.1.	Hersteller: Heimeier	26
2.1.1.	Köpfe	26
2.1.2.	Thermostat-Ventilunterteile mit Voreinstellung (Heimeier)	27
2.1.3.	Unterscheidungsmerkmale der Thermostat-Ventilunterteile (Heimeier)	27
2.1.4.	Erkennungsmerkmal eines Heimeier Thermostat-Ventilunterteils	27
2.2.	Hersteller: Danfoss	28
2.2.1.	Köpfe	28
2.2.2.	Thermostat-Ventilunterteile mit Voreinstellung (Danfoss)	29
2.2.3.	Unterscheidungsmerkmale der Thermostat-Ventilunterteile (Danfoss)	30
2.2.4.	Erkennungsmerkmal eines Danfoss Thermostat-Ventilunterteils	30
2.3.	Hersteller: MNG	30
2.3.1.	Köpfe	30
2.3.2.	Thermostat-Ventilunterteile mit Voreinstellung (MNG)	31
2.3.3.	Unterscheidungsmerkmale der Thermostat-Ventilunterteile (MNG)	31
2.3.4.	Erkennungsmerkmal eines MNG Thermostat-Ventilunterteils	32
2.4.	Hersteller: Oventrop	32
2.4.1.	Köpfe	32
2.4.2.	Thermostat-Ventilunterteile (Oventrop)	33
2.4.3.	Unterscheidungsmerkmale der Oventrop-Ventileinsatze	34
2.4.4.	Erkennungsmerkmal eines Oventrop Thermostat-Ventilunterteils	34
3	Arbeitshilfe zur Umwälzpumpenauswahl	35
4	Druckverluste üblicher Sondereinbauten	41
5	Normheizleistungen üblicher Heizflächen	46
5.1.	Flachheizkörper (Plattenheizkörper)	46
5.2.	Stahl- und Gussradiatoren	47
5.3.	Stahl-Röhrenradiatoren	48
5.4.	Fensterbank-Stahlröhrenradiatoren und Handtuch-Radiatoren	49
5.5.	Konvektoren und Standard-Konvektoren	50
Aufnahme	eformulare	51
Impressu	m	54

ABSCHNITT I: PROGRAMM

1 Installation

Systemvoraussetzungen

In der Regel sind alle Systemvorrausetzungen erfüllt, sobald Excel 97 (entspricht Excel 8.0) oder eine neuere Version auf dem PC installiert ist. Es bietet sich daher an, gleich mit Punkt 1.1.2 zu starten. Sollte es jedoch Probleme bei der Installation oder beim Programmstart geben, sollten die im Folgenden genannten Systemvoraussetzungen überprüft werden.

Hardware (Computer):

min. 64 MB RAM

Grafikkarte mit einer Auflösung von möglichst 1024 x 768 Pixel Software:

Microsoft Office 97 oder höher (entspricht z. B. Excel 8.0) Normale Schriftgröße

Bildschirm-Auflösung:

Zur Überprüfung und Einstellung der Bildschirmauflösung (Grafikkarte) stehen mehrere Möglichkeiten zur Verfügung:

- Desktop \rightarrow rechte Maustaste \rightarrow Eigenschaften \rightarrow Einstellungen \rightarrow Auflösung
- Desktop → Arbeitsplatz → Systemsteuerung → Anzeige → Einstellungen → Auflösung

System-Schriftgröße:

Die Überprüfung der systembedingten Schriftgröße erfolgt folgendermaßen:

 Desktop → rechte Maustaste → Eigenschaften → Einstellungen → Erweitert → Allgemein → Schriftgrad

Bei zu großer Schriftart sind die Masken unter Umständen nicht komplett zu sehen.

Weitere Software-Voraussetzungen:

Zum Starten des Programmes wird die Microsoft Bibliothek ActiveX Data Object 2.5 Library benötigt. Zur Überprüfung, ob diese Bibliothek vorhanden ist, kann folgender Weg gewählt werden: Excel öffnen \rightarrow Extras \rightarrow Makro \rightarrow Visual Basic Editor \rightarrow Extras \rightarrow Verweise

Ist die Bibliothek in den verfügbaren Verweisen nicht enthalten, so muss diese vor Programmstart nachinstalliert werden. Ein Update, welches die "Microsoft ActiveX Data Object 2.5 Library" enthält, ist auf der CD enthalten.

Installation und Ersteinrichtung

1. Kopieren Sie das Programmverzeichnis "Abgleich" von der CD-ROM "Programm zur Optimierung von Heizungsanlagen" in ein frei wählbares Verzeichnis auf der Festplatte Ihres PCs.

Der Pfadname sollte möglichst nicht zu lang sein. Unter Umständen können ansonsten Fehler auftreten, da der Pfad, unter dem das Programm abgelegt wurde, vom Programm verwendet wird und dieser nur eine bestimmte Länge haben darf. Das Verzeichnis sollte daher direkt auf der Festplatte gespeichert werden, z. B. unter "c:\Abgleich". **2.** Keine der Dateien darf schreibgeschützt sein. Dieser Schreibschutz wird jedoch durch das Kopieren von der CD auf die Festplatte automatisch eingestellt. Deshalb muss der Schreibschutz der Dateien manuell entfernt werden. Man geht dazu wie folgt vor:

Alle drei Dateien im Ordner "c: \Abgleich" markieren (dazu "Strg"-Taste festhalten und Dateien nacheinander mit der linken Maustaste anklicken), dann mit rechter Maustaste die markierten Dateien anklicken und im sich öffnenden Kontextmenu unter \rightarrow Eigenschaften \rightarrow Allgemein das Dateiattribut "Schreibgeschützt" entfernen.

Тур: Міс	rosoft Excel-Arbeitsblatt
Oft CN	WINDDWS\Profiles\sabirema\D\Version 2.5 - 03-05-14
Größe: 134	KB (137.728 Byte), 133.264 Byte belegt
MS-DOS-Name	STAMMD~1×LS
Erstellt:	Freitag, 9. Mai 2003 11:49:02
Geändert am:	Freitag, 9. Mai 2003 11:49:02
Letzter Zugriff:	Freilag, 16. Mai 2003
Dateiattribute:	□ Schreibgeschützt □ Versteckt
	🔽 Archiv 🗖 Dyttem

- **3.** Die Stammdaten-Datei "Stammdaten.xls" öffnen.
- 4. Im Blatt "Sachbearbeiter" eine Sachbearbeiter-Nummer (Feld "ID") und die Adresse des Sachbearbeiters eintragen (PLZ zwischen 1000 und 99999). Hierbei darf in der Spalte "LoeschKnz" nichts verändert werden. Die Sachbearbeiter-Nummer muss bei proKlima erfragt werden.
- **5.** Die Datei muss gespeichert werden und kann dann geschlossen werden.

Nach Durchführung der Punkte 1 bis 5 kann das **Programm** "Optimierung von Heizungsanlagen" **durch das Öffnen der Excel-Datei "Hydraulischer Abgleich.xls" gestartet** werden (c:\Abgleich\Hydraulischer_Abgleich.xls).

Damit das Programm startet, muss die Makrosicherheit in Microsoft Excel (Menu "Extras→Makro→Sicherheit" auf "Niedrig" oder "Mittel" gesetzt sein. Ist die Option "Hoch" gewählt, kann das Programm nicht gestartet werden. Bei der mittlerer Sicherheitsstufe ist bei jedem Programmstart ist die Abfrage "Makros aktivieren" mit "ja" zu bestätigen.

Die Datei "Bewegungsdaten.xls" dient unter anderem als Speicherort für die vom Benutzer eingegeben Daten. Wird diese Datei gelöscht oder beschädigt, sind die eingegebenen Daten verloren.

2 Einführung in das Programm

Techniken und Maßnahmen zur Schonung von Ressourcen und zur Senkung von Energiekosten rücken in das Zentrum gegenwärtiger energiepolitischer Diskussionen. Dazu gehört sicher auch die Optimierung von Heizungsanlagen einschließlich des hydraulischen Abgleichs. Zur Berechnung der Einstellparameter für den hydraulischen Abgleich und letztendlich zur Erbringung eines Nachweises über diese Qualitätssicherungsmaßnahme fehlte es bisher insbesondere in Bestandsgebäuden an einfach zu bedienenden EDV-Programmen.

Mit dem Excel-Programm "Optimierung von Heizungsanlagen" steht Ihnen eine Arbeitshilfe zur Verfügung, mit deren Hilfe die Berechnung des hydraulischen Abgleichs nicht mehr abschreckend wirkt, sondern möglichst einfach in den Arbeitsprozess eingefügt werden kann. Nach Abfrage und Eingabe weniger notwendiger Daten von Gebäude und Heizungsanlage wird vom Programm eine Heizlastberechnung durchgeführt. Auf Grundlage dieser Ergebnisse wird anschließend die notwendige Übertemperatur der einzelnen Heizkörper sowie die optimale Temperaturspreizung der Heizungsanlage berechnet. Für diese Spreizung und den daraus resultierenden Volumenstrom berechnet das Programm schließlich die notwendige Förderhöhe der Umwälzpumpe sowie die für die Voreinstellung der einzelnen Thermostatventile benötigten Werte (Volumenstrom und Druckverlust bzw. k_v -Wert).

2.1. Datenaufnahme

Der Benutzer wird anhand von einzelnen Masken durch das Programm geführt. Dabei werden alle zur Berechnung notwendigen Daten vom Programm abgefragt. Es bleibt die Möglichkeit offen, genaue Angaben zu treffen oder mit Standardwerten vereinfacht zu rechnen. Präzise Angaben sind natürlich für eine genaue Berechnung hilfreich.

Im Programm wird zwischen Gebäude und Anlagentechnik unterschieden. Die Gebäudedaten dienen in erster Linie zur Ermittlung der Raumheizlast. Der Großteil der zur Berechnung des hydraulischen Abgleichs benötigten Anlagendaten wird im zweiten Programmteil abgefragt.

2.2. Übersichtsschema des Berechnungsablaufs

2.3. Benötigte Ausgangsdaten – Aufnahmeformulare

Die zur Berechnung mit dem Programm benötigten Ausgangsdaten können mit Hilfe von drei Aufnahmeformularen vor Ort aufgenommen werden.

Auf dem Aufnahmeformular I werden allgemeine Daten, wie die Adressen von Gebäude und Ansprechpartner erfasst. Des Weiteren werden allgemeingültige Angaben für die vom Programm durchzuführende Heizlastberechnung abgefragt, z. B. die Lage des Gebäudes, das Gebäudebaujahr und der überwiegend verwendeter Fenstertyp.

Das Aufnahmeformular II fragt die Daten zum Heizkreis ab und muss für jeden im Gebäude vorhandenen Heizkreis, der eine eigene Pumpe bzw. einen eigenem Strangdifferenzdruckregler besitzt, separat ausgefüllt werden. Abgefragte Daten im Einzelnen:

- Art der Wärmeerzeugung: Gas-/Ölkessel oder Fernwärme,
- Angabe der maximal möglichen Kesselvorlauftemperatur bzw. bei Fernwärmesystemen der einzuhaltenden Vor- und Rücklauftemperaturen,
- Eingesetzte Umwälzpumpe: Hersteller, Typ und Angaben über die Förderhöhe und Einstellmöglichkeit (stufenlos oder stufig) der eingesetzten Umwälzpumpe,
- am evtl. vorhandenen Differenzdruckregler eingestellter Differenzdruck,
- am evtl. vorhandenen Überströmventil (im Kessel integriert oder extern) eingestellter Ansprechdruck,
- Aufnahme von vorhandenen Sonderbauteilen wie Schwerkraftbremsen, Wärmemengenzähler usw.,
- Länge des längsten Strangs (Summe aus Vor- und Rücklauf) im Heizkreis

Das Aufnahmeformular III muss für jeden zu beheizenden Raum ausgefüllt werden. Die Räume sind den einzelnen Heizkreisen zuzuordnen. Neben allgemeinen Angaben zum Raum, wie z.B. der Raumgrundfläche, müssen für die spätere Heizlastberechnung alle Begrenzungsflächen des Raumes aufgenommen werden, die an Außenluft, Erdreich oder Räume mit deutlich abweichenden Temperaturen grenzen. Zum Schluss werden Angaben zu den vorhandenen Heizflächen abgefragt. Um die in Aufnahmeformular III geforderten Grund- und Außenwandflächen möglichst einfach und schnell erfassen zu können, empfiehlt sich der Einsatz eines Laser-Entfernungsmessgeräts. Diese sehr handlichen Messgeräte stellen nicht nur die schnellste und einfachste Art zur Ermittlung von Längen dar, sondern berechnen automatisch Flächen und Volumen ohne umständlich mit Zollstock oder Maßband und Taschenrechner hantieren zu müssen.

Die Aufnahmeformulare sind im Abschnitt III dieses Handbuches als Kopiervorlage vorhanden.

2.4. Übersicht des Programmablaufs

Der Benutzer wird anhand von einzelnen Masken durch das Programm geführt. Dabei werden alle zur Berechnung notwendigen Daten vom Programm nacheinander entsprechend der Reihenfolge in den ausgefüllten Aufnahmeformularen abgefragt. Im Programm wird zwischen der Eingabe von Gebäudedaten (1. Programmteil: Heizlast) und Anlagentechnik (2. Programmteil: Anlagentechnik) unterschieden.

Schema über den Programmablauf:

2.5. Erläuterung der Eingaben

Sachbearbeiter-Maske [Eingabe der Sachbearbeiter-Nummer]

Nach dem Start des Programms werden Sie aufgefordert, Ihre Sachbearbeiter-Nummer einzugeben. Diese haben Sie zuvor bei der Installation des Programms in die Datei "Stammdaten.xls" eingegeben (siehe 0).

ingabe der Sachbearbeiter-	Nummer	>
Bitte geben Sie Ihre S	achbearbeiter-Nummer ein.	
Sachbearbeiter-Nr.:		
Sachbearbeiter :	Manfred Mustermann, Musterstraße 1	
Daten-Aufnahme	Abbruch	

Es stehen Ihnen folgende Schaltflächen zur Verfügung:

"Daten-Aufnahme"	Ermöglicht die Dateneingabe zur Neuaufnahme oder zur Korrektur, bzw. Erweiterung eines Datensatzes.
"Abbruch"	Beendigung des Programms

Antragsteller-Maske [Antragsteller]

Nach Betätigung des Buttons "Daten-Aufnahme" gelangen Sie in die Antragsteller-Maske. Hier sind alle Daten zum Antragsteller aufgelistet.

ntragsteller				×
Sachbearbeiter :	0001 Manfred Mustermann			
Daten zum Antrag	steller:			
Name:	Kunde			
Vorname :	Kurt			
Straße :	Altbaustraße			
Hausnummer :	25			
Postleitzahl :	30419			
Wohnort :	Hannover			
Telefon :	0511/1234			
Fax :	0511/5678			
Email :	kurt@kunde.de			
Neuen Antrag- steller anlegen			Zu den Gebäudedaten d. akt. Antragstellers	Zurück zum Sachbearbeiter
Neue Eingabe	< > Löschen	Suchen Speichern	Weiter	Zurück
Info : Datensatz	ngelegt , ID =12	Status : Bearbeiten		

Allgemeine Hinweise:

Teile der einzelnen Masken werden in die nächst tiefer liegende Ebene übernommen. Dies dient der besseren Orientierung innerhalb der einzelnen Ebenen.

Rufen Sie eine Ebene zum ersten Mal auf, so sind die Felder immer leer. In den Ebenen gibt es die Möglichkeit, nach vorhandenen Daten zu suchen, um evtl. fehlerhafte Eingaben zu korrigieren oder um diesen Datensätzen zusätzliche Daten hinzuzufügen. Bei der Suche reicht es aus, wenn Bruchstücke der Suchwörter eingegeben werden und anschlie-Bend die Schaltfläche "Suchen" gedrückt wird. Die Anzahl der gefundenen Datensätze wird in einem Textfeld am unteren rechten Rand der Maske mitgeteilt (z. B.: Satz 1 von 3). Die Datensätze (z. B. die der Antragsteller) liegen jedoch <u>nicht</u> alphabetisch vor, sondern in der Reihenfolge, wie die Datensätze gespeichert wurden.

In allen Ebenen bzw. Masken stehen folgende Schaltflächen zur Verfügung:

- 1. Neue Eingabe
- 2. <
- 3. >
- 4. Löschen
- 5. Suchen
- 6. Speichern
- 7. Weiter
- 8. Zurück

Die Schaltfläche "Neue Eingabe" leert den Inhalt der aktiven Maske zur Neueingabe von Daten. Sind bei Betätigung der Schaltfläche Daten in der Maske enthalten, so werden diese entfernt. Nicht gespeicherte Daten gehen dabei verloren.

Die Schaltfläche "<" blättert in der entsprechenden Ebene in den gefundenen Daten zurück, sofern mehr als ein Datensatz gefunden wurde. Wurde kein Datensatz gefunden, ist die Schaltfläche ohne Funktion.

Die Schaltfläche ">" blättert in der entsprechenden Ebene in den gefundenen Daten vor, sofern mehr als ein Datensatz gefunden wurde. Wurde kein Datensatz gefunden, ist die Schaltfläche ohne Funktion.

Die Schaltfläche **"Löschen"** löscht den ausgewählten Datensatz, sofern dieser bereits gespeichert war.

Die Schaltfläche "**Suchen**" sucht nach denjenigen Datensätzen in den Bewegungsdaten, die die eingegebenen Daten enthalten. War die Maske bei Betätigung der Schaltfläche leer, werden bereits vorhandene Datensätze angezeigt. Ansonsten wird der vorhandene Datensatz angezeigt, der zu den angegebenen Suchkriterien passt.

Die Schaltfläche "**Speichern**" speichert die eingegebenen oder geänderten Daten, indem ein neuer Datensatz angelegt oder ein bestehender Datensatz aktualisiert wird. Diese Schaltfläche muss gedrückt werden, um anschließend in die nächste Ebene gelangen zu können. Ein Datensatz ist immer dann gespeichert, wenn im Info-Feld der Hinweis "Datensatz angelegt !" zu finden ist.

Die Schaltfläche "Weiter" öffnet die nächste Ebene. Sie ist nur aktiv, wenn vorher gespeichert wurde oder nichts am geöffneten Datensatz verändert wurde. Die Schaltfläche **"Zurück**" verlässt die aktuelle Ebene und aktiviert die übergeordnete, sofern an dem angezeigten Datensatz nichts geändert wurde. Ansonsten erscheint eine Abfrage, ob gespeichert werden soll oder nicht.

Nachdem Sie alle Daten zum Antragsteller eingegeben und gespeichert haben, klicken Sie auf "Weiter", um in die nächste Ebene zur Eingabe der Gebäudedaten zu gelangen.

Gebäudedaten-Maske [allgemeine Angaben (Gebäudedaten)]

Bei den allgemeinen Angaben werden all diejenigen Daten abgefragt, die das Gebäude betreffen. Hierzu gehört als erstes die Anschrift des Gebäudes, sofern diese sich von der des Antragstellers unterscheidet. Die Gebäudeart, das Baujahr, der überwiegend verwendete Fenster- und Rahmentyp sowie die Lage des Gebäudes können über Auswahlmenüs angegeben werden.

Anschließend wird abgefragt, ob eine Fußbodenheizung vorhanden ist. Das Programm kann keinen hydraulischen Abgleich von Fußbodenheizungen berechnen. Sofern evtl. ein zusätzlicher, hydraulisch unabhängiger Heizkreis mit Heizkörpern vorhanden ist, kann dieser dennoch mit den zugehörigen Räumen eingegeben und berechnet werden.

achbearbeiter: 00 ntragsteller: Name : Werner Hausm Strasse : Podbielskistra Ort : 30167 Hannover	01 Muster Mustermann ann 18e 5 Baujahr :	Anschrift des Ge Straße : Hausnummer : Postleitzahl : Ort : überwiegend verw Fenstertyp :	Podbielskistraße 5 30167 Hannover	Lage des Gebäude	
Mehrfamilienhaus	• 1) vor 1919	2 Scheiben-Isolierve	rglasung (u=3)	Einzelhaus, windsch	wach, normal
		Rahmentyp :	enueter		
		∫ Holz		×.	
Angabe zu den I	Heizungskomponen	Holz ten: Fußbodenheizung vorhanden		<u>_</u>	
Angabe zu den l leues Gebäude für len akt. Antragsteller nlegen Neue Eingabe	teizungskomponen F	Holz ten: Fußbodenheizung vorhanden	Spends	Heickreis für das akt. Gebäude anlegen	Zurück zum Antragsteller Zurück

Heizkreisdaten-Maske [Heizkreisdaten-Aufnahme]

In dieser Maske ist nur eine Eingabe der Heizkreisbezeichnung erforderlich. Die Heizkreisbezeichnung ist notwendig, um in einem Gebäude mit mehreren hydraulisch voneinander unabhängigen Heizkreisen jeden Kreis notwendigerweise einzeln berechnen zu können. Hier ist jegliche Eingabe möglich, also auch eine Nummerierung oder sonstige Auflistung. Eine Heizkreisbezeichnung muss auch bei Gebäuden mit nur einem Heizkreis vergeben werden. Wie viele Heizkreise zum derzeitigen Zeitpunkt eingegeben wurden, wird auf der Maske in der Art "1 von max. 50 Heizkreis(e)" ausgegeben.

Weiter fragt das Programm die Länge des längsten Heizungsstrangs (Vor- und Rücklauf) im jeweiligen Heizkreis ab. Kann diese Länge nicht über ein exaktes Aufmaß ermittelt werden, kann eine Abschätzung des theoretisch denkbar längsten Stranges über die Gebäudegeometrie vorgenommen werden. Die abgeschätzte Stranglänge berechnet sich dann aus 2 x Gebäudebreite + 2 x Gebäudelänge + 2 x Gebäudehöhe (für Vor- und Rücklaufleitung).

In die Ebene "Heizkreisdaten-Aufnahme" ist die Schaltfläche "Auswertung" eingebunden. Bei Betätigung wird die Berechnung des vereinfachten hydraulischen Abgleichs und der Heizlast auf Grundlage der bis zu dem Zeitpunkt vorhandenen Daten für den aktuell ausgewählten Heizkreis gestartet. Voraussetzung für die Auswertung ist jedoch, dass zuvor alle Räume mit den jeweiligen Heizkörperdaten und den wärmeübertragenden Bauteilflächen (4. und 5. Ebene) eingegeben wurden. Um diese Eingabe vornehmen zu können, müssen Sie auf den Button "Weiter" klicken und gelangen in die Raumdaten-Maske.

Heizkreisdaten-Aufnahme			×
Sachbearbeiter: 0001 Muster Muste Antragsteller: Name : Werner Hausmann	mann		
Gebäudeadresse: Podbielskistraße 5, 30167 Hannover			
Bitte beachten: Einen einzelnen Heizkreis bilden jeweils eigener Pumpen oder du Strangdifferenzdruckregler ein darstellen.	diejenigen Stränge, die aufgrund Irch zentrale e hydraulisch unabhängige Einheit		
Heizkreis-Nr.:	0001.001.0001.0001	2 von max. 50 Heizkrei	is(en)
<u>Heizkreis-Bezeichnung:</u>	Heizkreis 1		
Länge des längsten HzgStrangs in diesem Heizkreis (Vor- u. Rücklauf) :	50 m		
Neuen Heizkreis im akt. Gebäude anlegen			Zu den Räumen der akt. Zurück zum akt. Heizkreises Gebäude
Neue Eingabe <	> Löschen	Speichern	Weiter Zurück
Info :	Status	: Bearbeiten Geändert Salz	1 von 2 Auswertung

Raumdaten-Maske [Raumdaten-Aufnahme]

In dieser Maske werden all diejenigen Daten abgefragt, die den einzelnen Räumen zugeordnet sind. Hierunter fallen Raumvolumen, -fläche, -höhe, Temperaturniveau, Heizkörpertypen etc.

Eine Raumbezeichnung ist obligatorisch. Sie sollten jedoch eine eindeutige Bezeichnung unter ergänzender Angabe von Geschoss und Wohnung (insbesondere bei Mehrfamilienhäusern) verwenden, um den Raum hinterher beim Ausdruck der Ergebnisse eindeutig identifizieren zu können. Die Raumbezeichnung könnte z. B. lauten: "2. OG rechts – Küche".

Zur Ermittlung der Raumheizlast sind Grundfläche und Höhe des Raumes in die dafür vorgesehenen Felder einzugeben. Das Programm geht grundsätzlich davon aus, dass der Raum kubisch aufgebaut ist und berechnet sich das Raumvolumen automatisch aus diesen beiden eingegebenen Größen. Sollte die Bauform des Raumes jedoch nicht kubisch sein, so muss der Haken im Feld "Raum ist kubisch aufgebaut" entfernt werden und das Raumvolumen nach vorheriger Ermittlung manuell eingetragen werden. Die Raumtemperatur kann nicht manuell eingetragen werden. Stattdessen stehen in einer Auswahlbox verschiedene Raumbezeichnungen (nach DIN 4701) zur Verfügung, denen die jeweilige Norm-Innentemperatur zugeordnet ist.

Im nächsten Schritt müssen die im Raum vorhandenen Heizkörper eingegeben werden. Pro Raum können bis zu vier Heizkörper angelegt werden. Sollte der Fall eintreten, dass in einem Raum mehr als vier Heizkörper eingebaut sind, so ist dieser sinnvoll in zwei oder mehr "gedachte" Räume zu unterteilen.

tragsteller:						
Name : Werner Hausmann		Raum-Nr.:		0001.001.0001.0	001.0001	
bäudeadresse:		Raum-Bez	und Geschoss:	Wohnzimmer	NI CONTRACTOR OF	
Podbielskistraße 5, 30167 Ha	nnover		Grundfläche:	30 m²		
izkreis:	200222		Raumhöhe:	2,5 m		
Nummer: 0001.001.00	01.0001		Temperatur:	20	•	c
Bezeichnung: Hausmann			Raum ist kubisch	aufoebaut		
			Reunvolument	m ³		
				i Tana		
Heizkörper 1:	Heizkörper 2:		Heizkörper 3:		Heizkörper 4:	
K-Art: Profil-Flach-HK	HK-Art: Kein H	К	HK-Art; Kein H	HK 💌	HK-Art: Kein	HK
-К-Тур: 22	🛨 НК-Тур: 🗍	¥.	НК-Тур:	¥	НК-Тур:	
töhe in mm: 500	Höhe in mm:	ι.	Höhe in mm:	~	Höhe in mm:	
änge in mm: 1600	Länge in mm:	9	Länge in mm:		Länge in mm:	
Tiefe in mm:	🖌 Tiefe in mm:	\$	Tiefe in mm:	4	Tiefe in mm:	
Sliederanzahl:	Gliederanzahl:		Gliederanzahl:		Gliederanzahl:	
eistung in W: bei 75/65/20 °C	Leistung in W: bei 75/65/20 °C		Leistung in W: bei 75/65/20 °C		Leistung in W: bel 75/65/20 °C	i —
Entfernung zur 2) mitte Pumpe:	Entfernung zur Pumpe:	Ŧ	Entfernung zur Pumpe:	Ŧ	Entfernung zur Pumpe:	2
euen Raum für akt, Gebäude Ilegen					BFs für den akt. Raum anlegen	Zurück zum Heizkreis
eue Eingabe <	>	öschen		Speichern	Weiter	Zurück

Nach Anwahl des vorhandenen Heizkörpertyps (Gussradiator, Stahlradiator, Profil-Flach-Heizkörper, anderer Typ) werden nacheinander die jeweils für den gewählten Heizkörpertyp erforderlichen ergänzenden Felder für die Größenangaben geöffnet. Alle Daten, bis auf die Angabe der vorhandenen Glieder von Radiatoren, können Auswahlboxen entnommen werden. Diese Boxen enthalten die jeweils gültigen Normgrößen. Sollte eine reale Heizkörpergröße nicht völlig identisch mit den vorgegebenen Werten sein, ist eine Rundung auf den vorgegebenen Wert zulässig. Sofern sich ein Heizkörper jedoch überhaupt nicht über die vom Programm zur Auswahl gestellten Menüs abbilden lässt (Bad-Design-Heizkörper, Sondergrößen), kann "anderer Typ" gewählt werden. In diesem Fall muss die Norm-Leistung des Heizkörpers bei 75/65/20°C aus Herstellerangaben ermittelt und in das vorgesehene Feld eingetragen werden. Die Leistungen aller anderen Heizkörper sind bereits im Programm hinterlegt und werden angezeigt. Als letztes muss die Entfernung des Heizkörpers zur Pumpe hin angegeben werden. Unterschieden wird hierbei zwischen den Angaben nah, mittel und weit. Als Orientierung dient der Hinweis, dass die Entfernungszone "mittel" in einem Bereich zwischen 33 % und 66 % der zuvor eingegeben längsten Stranglänge liegt.

Nachdem alle Eingaben über den Button "Speichern" gesichert worden sind, gelangen Sie über "Weiter" in die Maske zur Begrenzungsflächen-Aufnahme.

Begrenzungsflächen-Maske [Begrenzungsflächen-Aufnahme (BF)]

In dieser Maske werden all diejenigen Daten abgefragt, die die Umschließungsflächen des betrachteten Raumes betreffen. Hierbei bleibt es Ihnen überlassen, ob Sie sehr genau arbeiten (und für jede einzelne Umschließungsfläche den zugehörigen U-Wert ermitteln und angegeben) oder sich auf die in den Stammdaten hinterlegten U-Werte¹ verlassen, weil z.B. keine Angaben über den Wandaufbau gemacht werden können. Die Auswahl der Begrenzungsflächenart ist hierbei von großer Wichtigkeit, da hier im Zusammenhang mit dem vorher eingegebenen Baujahr (siehe Gebäudedaten-Maske) der Grundstein der kompletten Berechnung gelegt wird. Für ein Ergebnis mit ausreichend hoher Genauigkeit genügt es, nur solche Begrenzungsflächen einzugeben, die gegenüber der Lufttemperatur an der angrenzenden Begrenzungsfläche eine Temperaturdifferenz größer 5 K aufweisen. Dies sind in der Regel alle Außenwandflächen sowie Innenwandflächen gegen unbeheizte Flure, Keller und Dachgeschossräume.

Zunächst ist eine frei wählbare Begrenzungsflächen-Bezeichnung (BF-Bezeichnung) zu vergeben (z.B. Außenwand Süd). Anschließend ist die in den Programm-Stammdaten hinterlegte Begrenzungsflächen-Art aus einem Auswahlmenü auszuwählen. Die Angabe der auf der Rückseite dieser Begrenzungsfläche vorhandenen Temperatur erfolgt ebenfalls über eine Auswahlbox, indem der angrenzende Raum (bei Innenwänden) bzw. die für den jeweiligen Standort vorherrschende Norm-Außentemperatur (bei Außenwänden) ausgewählt werden. Im nächsten Schritt ist die Größe der Bauteilfläche einschließlich evtl. vorhandener Türen und Fenster einzugeben. Für eine sehr hohe Genauigkeit des Ergebnisses kann, sofern bekannt, der u-Wert der Bauteilfläche, angegeben werden. Eine große Auswirkung auf das Ergebnis haben nachträglich angebrachte Wärmedämmungen. Entsprechend müssen Dicke und Wärmeleitfähigkeitsgruppe solcher nachträglichen Dämmungen unbedingt angegeben werden.

¹ Die im Programm hinterlegten U-Werte wurden zum größten Teil aus der IWU-Gebäudetypologie und den jeweils gültigen Wärmeschutzverordnungen entnommen. Abhängig von der Baualtersklasse wurden so die typischen U-Werte für verschiedene Bauteile im Programm hinterlegt.

Sachbea	rbeiter:	0001 Mus	ter Muste	armann				
Antrags	teller:							
Name	Hans Mu	stermann		BF-Nr.:	000	01.002.0005.0004.0005.	00006	
Gebäud	e:				1		ane real	
Muste	rgasse 2,	30169 Hann	iover	<u>BF-Bez.:</u>	Außen	wand Südseite		
Heizkrei	51			BF-Art:	1	01) Aussenwand an Lu	t (AW-L)	
Heizkn	eis-Nr.; 	0001.002 choupg: Hei	,0005.00	104 Temperati	uraufder j	-14		
Raum	11193-0626	childhigt liici	2N CI3-1	Rückseite	der BF: I		v	
Raum-	Nr.: 000	1.002.0005.	0004.00	05 Fläche der	BF (inkl. evt	tueller Fenster): 13,4	m²	
Raum	Bezeichnu	on: Raum 1:	Wohnzii	nmer EG. Grunwer	t day Elitche	bakapat? 0,23	W/(m2K)	
Dicke in	cm:			Wärmeleitfähigkeitsgruppe:	. *			
Dicke in nster-Anç	cm: jaben	 Túr-Angab	en.	Wärmeleitfähigkeitsgruppe:				
Dicke in hster-Ang Fenstert	cm: jaben preite:	 Tür-Angab Fensterhöl	oen he:	 		Rahmenart:		
Dicke in ister-Ang Fensterf 3,4	cm: gaben preite: m	Tür-Angeb Fensterhöl	en he: m	Värmeleitfähigkeitsgruppe:		Rahmenart:	nnat	1
Dicke in ster-Ang Fensterf 3,4 1,85	cm: jaben preite: m m	Tür-Angat Fensterhöl	en he: m m	Wärmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)		Rähmenart: Kunststoff, gedär Kunststoff, gedär	nmt	.2
Dicke in Ister-Ang Fenstert 3,4 1,85	aben preite: m m m	Tür-Angab Fensterhöl	en he: m m	Värmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)	× ×	Rahmenart: Kunststoff, gedär Kunststoff, gedär 	nmt	
Dicke in Inster-Ang Fenstert 3,4 1,85	iaben preite: m m m	Tür-Angeb Fensterhöl	xen he: m m m	Värmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)		Rahmenart: Kunststoff, gedär Kunststoff, gedär 	nmt	
Dicke in Inster-Ang Fenstert	aben preite: m m m m	Tür-Anget Fensterhöl 1,0 2,2	ien he: m m m m	Värmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)		Rahmenart: Kunststoff, gedär Kunststoff, gedär 	nmit	2
Dicke in Inster-Ang Fenstert 3,4 1,85	cm: jaben preite: m m m m	Tür-Anget Fensterhöl 1,0 2,2	en he: m m m m	Värmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)		Rahmenart: Kunststoff, gedär Kunststoff, gedär 	nmt nmt Wec	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dicke in hster-Ang Fenstert 3,4 1,85	r den akt.	Tür-Anget Fensterhöl 2,2	en he: m m m	Värmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)		Rahmenart: Kunststoff, gedär Kunststoff, gedär 	nmt nmt Wes BFs 	hselt von de eines Raums
Dicke in hster-Ang Fenstert 3,4 1,85 1,85 1 sue BF fü sum einge	cm: jaben preite: m m m m r den akt. sben	Tür-Anget Fensterhöl 2,2	en he: m m m	Värmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3)		Rahmenart: Kunststoff, gedär Kunststoff, gedär 	nmt nmt Wer BFs zum	hselt von de eines Raum Raum selbs
Dicke in Inster-Ang Fenstert 3,4 1,85 Uue BF fü Uue BF fü Uum einge Neue E	r den akt- ingabe	Tür-Anget Fensterhöl	en he: m m m	Wärmeleitfähigkeitsgruppe: Fensterart: 2 Scheiben-Isolierverglasung (u=3) 2 Scheiben-Isolierverglasung (u=3) Löschen		Rahmenart: Kunststoff, gedär Kunststoff, gedär	nmt nmt Wer BFs zum	hselt von de eines Raum Raum selbs Zurrück

Pro Begrenzungsfläche können bis zu vier Fenster und Türen eingegeben werden. Zum Wechsel zwischen Fenster- und Türeingabe klicken Sie auf die Karteikartenreiter mit den jeweiligen Bezeichnungen. Angaben zu Breite und Höhe der Fenster/Türen geben Sie manuell ein. Über Auswahlmenüs sind Fenster- und Rahmenart bzw. die Türart auszuwählen.

Nachdem alle Eingaben für eine Begrenzungsfläche abgeschlossen sind, müssen Sie die Daten durch Klicken auf den Button "Speichern" speichern. Sofern für den aktiven Raum (siehe Angabe in der Maske "Begrenzungsflächen-Aufnahme" oben links) eine weitere Begrenzungsfläche anzulegen ist, klicken Sie auf "Neue Eingabe". Die Felder werden dann zur Neueingabe geleert. Wenn die Begrenzungsflächeneingabe für den aktiven Raum abgeschlossen ist und die letzte Eingabe gespeichert wurde, gelangen Sie über den Button "Zurück" in die Raumdaten-Maske, in der Sie einen neuen Raum anlegen können.

Anlagentechnik

Nachdem Sie alle Räume und die dazugehörigen Heizkörper und Begrenzungsflächen in die entsprechenden Masken eingegeben haben, gehen Sie in die **"Heizkreisdaten-Maske**" zurück und betätigen die **Schaltfläche "Auswertung"**. Das Programm berechnet nun zunächst die Heizlast der einzelnen Räume und legt anhand der vorhandenen Heizkörper die benötigte Übertemperatur der Heizkörper fest. Für die Berechnung des vereinfachten hydraulischen Abgleichs sind in weiteren Fenstern die fehlenden Daten zu ergänzen. Bitte beachten Sie, dass diese **Berechnung** je nach Leistung Ihres Computers **bis zu 5 Minuten** und länger dauern kann.

Angabe der Art der Vorlauftemperaturregelung

Zunächst fragt das Programm die Art der Vorlauftemperaturregelung ab. Bitte klicken Sie in der Maske an, ob die Vorlauftemperatur des betrachteten Systems sich beliebig wählen bzw. einstellen lässt oder fest vorgegeben ist (z.B. bei bestimmten Fernwärmeübergabestationen oder wenn es sich um ein Netz mit mehreren Teilsträngen handelt, die jeweils mit der gleichen Vorlauftemperatur versorgt werden). Sofern die Vorlauftemperatur vorgegeben ist, müssen Sie die Höhe der Temperatur in das dafür vorgesehene Feld eintragen. Durch Betätigung der Schaltfläche "Weiter" gelangen Sie in die nächste Maske.

beliebig gewählt werden:	() (bitte auswählen)
nicht beliebig gewählt werden:	🔘 (bitte auswählen)
Contraction Contraction Contraction (Contraction)	
-> Vardedenene	Ausledungs-vonautteronefatur
-> vorgegebene	Auslegungs-Vorlauttemperatur. 🛄 🕻
-> vorgegenene	Auslegungs-Vorlauttemperatur (<mark>UU)</mark> C
> vorgegenene	Auslegungs-Vonauttemperatur. []*C
-> vorgegenene	Auslegungs-vorlautemperatur [] C

Auswahl der Wärmeerzeugung

In der nächsten Maske fragt das Programm ab, ob die Art der Wärmeerzeugung über Gas/Öl oder über Fernwärme erfolgt. Die Auswahl erfolgt wieder durch Betätigung einer der beiden Auswahlmöglichkeiten. Durch Betätigung der Schaltfläche "Weiter" wird, je nach vorher gewählter Wärmeerzeugung, das Fenster Gas/Öl oder Nah-/Fernwärme aufgerufen.

Eingabe der erforderlichen Temperaturdaten

In einer jetzt folgenden Eingabemaske sind bei vorher getroffener Auswahl von

- "Gas/Öl" Angaben über die maximal mögliche Vorlauftemperatur des Kessels (siehe Herstellerunterlagen) oder bei
- "Nah-/Fernwärme" Angaben über die heizungsseitig maximal mögliche Vorlauftemperatur (Programmbedingt sind hier max. 90 °C zugelassen, sollten höhere Vorlauftemperaturen (bis zu 110 °C) benötigt werden, kann dies nur erfolgen, wenn bei der Auswahl der Vorlauftemperaturregelung "Auslegungs-Vorlauftemperatur nicht beliebig wählbar" gewählt wird und die Temperatur manuell vorgegeben wird) und über die eventuell vom Versorger geforderte maximale Systemrücklauftemperatur

vorzunehmen.

Zur Optimierung des Temperaturni und klicken Sie anschließend auf '	veaus geben Sie die max. mögliche Kesselte Weiter"	emperatur an
Eingabe maximale Kesseltempera	tur	
Maximal mögliche Kesseltemperat	ur in (°C): 0	
ptoKlima	Weiter	

Durch Betätigung der Schaltfläche "Weiter" wird die Berechnung fortgesetzt und der Volumenstrom des Gesamtsystems berechnet. Bitte beachten Sie, dass diese **Berechnung** je nach Leistung Ihres Computers **bis zu 5 Minuten** und länger dauern kann.

Zur Optimierung des Tempera einzuhaltende Rücklauftempe	urniveaus geben Sie die max. Vorlauftempera atur an und klicken Sie anschließend auf "We	tur und die iter"
Eingabe der erforderlichen Te	nperaturen	
Maximal mögliche Vorlauftem Einzuhaltende, max. Rücklauf	peratur in [°C]: <u>90</u> emperatur in [°C]: <u>50</u>	
proKlima Der anwerte Fante	Weiter	ОРТІМИЯ

Fehlermeldung bei zu geringer Vorlauftemperatur

Nachdem die maximal mögliche Vorlauftemperatur eingegeben worden ist, berechnet das Programm die optimale Vorlauftemperatur. Sollte das Programm feststellen, dass die maximal mögliche Vorlauftemperatur entweder zu niedrig ist, um

- a) alle Heizkörper auf die erforderliche Wärmeleistung zu bringen oder
- b) um auch noch am thermisch ungünstigsten Heizkörper eine annehmbare Regelgüte zu erreichen (Forderung: Wärmeübertragerkennwert $a \ge 0,2$)

gibt das Programm die Fehlermeldung aus, dass der thermisch ungünstigste Heizkörper die benötigte Raumheizlast mit der vorher angegebenen maximalen Kesselvorlauftemperatur nicht decken kann.

Nach Bestätigung der Fehlermeldung wird der thermisch ungünstigste Heizkörper angezeigt.

Ungünstigster Heizkörper:	
qγT	Anderer Typ
Normheizleistung des HKs (bezogen auf 75/85/20 °C)	100 W
Raumheizlast	220 W
Raumnummer	1
Raumbezeichnung	Gäste WC EG
	Eine weitere Berechnung ist nicht möglich, da der genannte Heizkörper bezogen auf die Raum- heizlast zu klein ist.
	Bitte Überprüfen Sie für diesen Raum die Raumheizlast (Begrenzungsflächen) und die Angaben zum Heizkörper.
	Falls alle Angaben korrekt sind, muss entweder der thermisch ungünstigste Heizkörper gegen einen größeren getauscht werden oder die Vorlauftemperatur muss erhöht werden.
	Zurück zum Programmstart Heizkörper-Übersicht

Das Programm fordert Sie dazu auf, für den Raum, in welchem der thermisch ungünstigste Heizkörper installiert ist, die Raumheizlast anhand Ihrer gemachten Begrenzungsflächen-Eingaben sowie die angegebenen Heizkörperdaten zu überprüfen. Für diese Überprüfung klicken Sie auf die Schaltfläche "Zurück zum Programmstart" und melden sich neu an. Anschließend öffnen Sie die entsprechende Berechnung in der Antragsteller-Maske und bewegen sich bis zum in der Fehlermeldung angezeigten Raum über die Schaltflächen "Weiter" und ">" fort.

Sollte sich bei dieser Überprüfung herausstellen, dass alle Angaben richtig sind, muss entweder der zu kleine Heizkörper ausgetauscht werden oder müssen Maßnahmen ergriffen werden, um die maximal mögliche System-Vorlauftemperatur zu erhöhen.

Durch Klicken der Schaltfläche "Heizkörper-Übersicht" erhalten Sie eine Übersicht aller eingegebener Heizkörper mit Angabe der relevanten Größen. Anhand des Verhältnisses aus Heizkörpernormleistung zu relativer Raumheizlast Q_{HK}/Q_R können Sie evtl. vorhandene Über- und Unterdimensionierungen einzelner Heizkörper erkennen.

HKNr.	НК. Тур	HK-Norm- leistung in [W]	rel. Raum- heizlast in [W]	HK Exponent	Δt _{in} in [K]	Q _{HK} /Q _R	Raumbezeichnung	Thermisch ungünstigster HK:	1
1	Anderer Typ	100	220	1,30	91	0,5	Gaste WC EG	Q _{HK} / Q _R [-]:	0,5
2	Guss-Radiator 160/980/7	1078	531	1,30	29	2,0	Flur EG und 1.0G	At _n in [K]:	91
3	Guss-Radiator 220/430/42	3864	1929	1,30	29	2,0	Wohnzimmer EG	Sonstige Daten:	1
4	Guss-Radiator 110/580/23	1587	665	1,30	26	2,4	Küche EG	längster Strang [m]:	22
5	Profil-Flach-HK 22/900/1000	2355	790	1,32	22	3,0	Bad 1.0G	beheizte Fläche [m²]:	97
6	Guss-Radiator 160/580/23	2185	1375	1,30	35	1,6	Schlafzimmer 1.0G	Gebäudetyp:	1
7	Guss-Radiator 160/580/20	1900	1090	1,30	33	1,7	Gäste1 1.0G	max. Kessel t, [°C]:	70
8	Guss-Radiator 110/580/25	1725	1078	1,30	35	1,6	Gäste2 1.0G	Anzahl der HKs:	8
į								Mittelw. Q _{HK} / Q _R [-]:	1,8
								MIN Q _{HK} / Q _R [-]:	0,5
i					1			MAX Q _{HK} / Q _R [-]:	3,0

Eingabedaten zur Berechnung des Hydraulischen Abgleichs

In der nun aufgehenden Maske ist zunächst der in der Anlage eingesetzte Pumpentyp auszuwählen. Das Programm unterscheidet hierbei zwischen einem Typ A (nicht stufenlos einstellbare Pumpe) und einem Typ B (stufenlos einstellbare Pumpe).

Hinweis: Handelt es sich lediglich um einen Teilstrang eines Netzes, bezieht sich die Auswahl Typ A bzw. Typ B unter Umständen statt auf eine Pumpe auf einen Differenzdruckregler.

Unter den Typ A fallen alle Pumpen, die nicht die Möglichkeit bieten, eine stufenlose Einstellung ihrer Förderhöhe im Auslegungsfall vorzugeben. Oft sind derartige Pumpen in Kessel-Kompaktgeräten bereits werksseitig integriert. Sie lassen sich nicht stufenlos einstellen, sondern fahren entweder konstant auf einer Drehzahlstufe oder können über eine Drehzahlregelung stufig zwischen einer und bis zu vier Drehzahlstufen betrieben werden. Auch durch die Kesselregelung geregelte Pumpen fallen unter den Typ A: Über die Kesselregelung wird ihre Förderhöhe zwar dynamisch in Abhängigkeit der abgegebenen Wärmeleistung stufenlos eingestellt, im Auslegungsfall (bei Volllast) stellt sich jedoch immer ein von der Kesselregelung vorgegebener Wert ein.

Bei Pumpen nach Typ B handelt es sich zumeist um externe, also nicht in den Wärmeerzeuger integrierte Pumpen, die die Möglichkeit einer stufenlosen Einstellung ihrer Förderhöhe für den Auslegungsfall bieten. Es handelt sich also um Differenzdruck geregelte Pumpen, bei denen der Soll-Differenzdruck unabhängig vom Volumenstrom in einem vorgegebenen Bereich beliebig gewählt werden kann.

Bei Auswahl des Pumpentyps A ist die Eingabe der Restförderhöhe dieser Pumpe in die vorgesehenen Felder vorzunehmen. Die Eingabemaske bietet die Möglichkeit, diese Restförderhöhe für bis zu vier Stufen einzugeben. Der jeweilige Wert muss in Abhängigkeit des Anlagenvolumenstroms, den die Pumpe fördern muss, aus Herstellerunterlagen des Kessels oder der Pumpe ermittelt werden. Der dazu benötigte Anlagenvolumenstrom wird vom Programm berechnet und auf dem Bildschirm ausgegeben.

Bei Auswahl des Pumpentyps B müssen minimal und maximal mögliche Restförderhöhe beim vom Programm angegebenen Volumenstrom aus dem Kennlinienfeld der Pumpe abgelesen und in die dafür vorgesehenen Felder eingetragen werden.

Die Restförderhöhe ist die Förderhöhe, die die Pumpe nach Überwindung des Druckverlustes im Kessel noch zur Verfügung stellen kann. Falls also für eine Pumpenstufe nur die absolute Förderhöhe der Pumpe bekannt ist, muss zusätzlich der Kesseldruckverlust beim angegebenen Volumenstrom ermittelt werden und von der reinen Pumpenförderhöhe abgezogen werden. In den meisten Fällen wird in den betreffenden Unterlagen der Kesselhersteller jedoch immer schon die Restförderhöhe angegeben. Die Eingabe der Restförderhöhe kann in vier verschiedenen Einheiten (mbar, m, kPa, Pa) eingegeben werden. Die Einheit ist dazu über das Auswahlkästchen rechts neben den Eingabefeldern für die Restförderhöhe einzugeben. Werte für unterschiedliche Drehzahlstufen sind in derselben Einheit einzugeben. In bestimmten Fällen wird vom Kesselhersteller der Einbau eines Überströmventils in das Rohrnetz vorgeschrieben oder empfohlen. Sollte ein externes (also nicht im Kessel integriertes) Überströmventil in der Anlage vorhanden sein, muss der Ansprechdruck dieses Bauteils in der Maske eingegeben werden. Die Einheit ist wieder über das betreffende Kontrollkästchen wählbar.

Als letztes wird der **Druckverlust** von eventuell vorhandenen **Sondereinbauten** in der Anlage abgefragt. Unter dem Begriff Sondereinbauten werden solche Bauteile zusammengefasst, die einen zusätzlichen Druckverlust zu den immer auftretenden Druckverlusten in den geraden Rohrstrecken und Einzelwiderständen (Form- und Verbindungsstücke, Heizkörper) mit sich bringen, **wie Wärmemengenzähler, Filter, Schmutzfänger, Mischer oder Schwerkraftbremsen bzw. Rückschlagventile/-klappen**. Der Druckverlust dieser Bauteile muss in Abhängigkeit vom Volumenstrom (wird vom Programm vorgegeben) den Herstellerunterlagen entnommen werden. Thermostatventile und Rücklaufverschraubungen fallen nicht unter die Gruppe der Sondereinbauten. Ihr Druckverlust wird an einer anderen Stelle des Programms berechnet.

Ist ein externes Überströmventil vorhanden und treten zusätzlich Druckverluste in Sondereinbauten auf, ist folgender Zusammenhang unbedingt zu beachten:

 Das Programm geht stets davon aus, dass sich der angegebene Druckverlust von Sondereinbauten auf Einbauten bezieht, die zwischen Überströmventil und den Verbrauchern angeordnet sind, also nicht zwischen Pumpe und Überströmventil. Sollten dennoch Sondereinbauten zwischen Pumpe und Überströmventil vorhanden sein, muss der Druckverlust dieser Sondereinbauten durch die Angabe einer entsprechend verringerten Restförderhöhe berücksichtigt werden.

Wird im Zuge der Berechnung vom Programm der Einbau eines Differenzdruckreglers vorgeschlagen und wird dieser bei der nachfolgenden Berechnung miteinbezogen, ist folgender Zusammenhang unbedingt zu beachten:

2. Das Programm geht stets davon aus, dass sich der angegebene Druckverlust von Sondereinbauten auf Einbauten bezieht, die zwischen Differenzdruckregler und den Verbrauchern angeordnet sind, also nicht zwischen Pumpe und Differenzdruckregler. Sollten die Sondereinbauten nicht zwischen Differenzdruckregler und den Verbrauchern vorhanden sein sondern zwischen Pumpe und DDR, muss die Berechnung erneut durchgeführt werden. Der Druckverlust dieser Sondereinbauten muss durch die Angabe einer entsprechend verringerten Restförderhöhe berücksichtigt werden.

Erforderliche Eingabedaten zur Bered	chnung des hydraulischen Abgleichs
Zur Berechnung des hydraulischen Abgleichs sin Sie die folgenden Felder entsprechend der Erläutr	d weitere Eingaben erforderlich. Bitte füllen erungen aus
Eingabe von Pumpen- bzw. Differenzdruckre	glerdaten
Bitte wählen Sie Typ A bzw. Typ B	
TYP A) Restförderhöhe nicht oder nicht stufe	anlos einstellbar: (in (bitte auswählen)
Berechneter Anlagenvolumenstrom:	274 l/h
Restförderhöhe der Pumpe (Typ A) bei berechnetem Anlagen-Volumenstrom:	Stufe 1 Stufe 2 Stufe 3 Stufe 4 200 0 0 0 [mbar]
TYP B) Restförderhöhe stufenlos einstellbar	(Regelpumpe oder DDR): 🔿 (bitte auswählen)
Berechneter Anlagenvolumenstrom.	274 l/h
Einstellbare Restförderhöhe (Typ B) bei berechnetem Anlagen-Volumenstrom:	MIN MAX
Externes Überströmventil	
Bitte geben Sie den Ansprechdruck eines externe	es Überströmventils ein:
Ansprechdruck externes Überströmventil:	0 [mbar]
Druckverlust in Sondereinbauten	
Bitte geben Sie den Druckverlust in Sondereinbau	uten ein (z. B. WMZ, Filter, Rückschlagventile):
Druckverlust in Sondereinbauten:	0 [mbar] 💌
	Weiter

Nach Anklicken der Schaltfläche "Weiter" erfolgt eine vereinfachte Rohrnetzberechnung zur Ermittlung der Einstellwerte für einen hydraulischen Abgleich. Bitte beachten Sie, dass diese **Berechnung** je nach Leistung Ihres Computers und Anzahl der Räume **bis zu 5 Minuten** und länger dauern kann.

Bei der bereits berechneten optimalen Temperaturspreizung und dem daraus resultierenden Anlagenvolumenstrom können in einigen Fällen keine realistischen k_v-Werte ermittelt werden. In diesem Fall kommt es zu einem Hinweis. Nach Bestätigung wird ein neuer Anlagenvolumenstrom berechnet. Mit diesem veränderten Anlagenvolumenstrom sind die bereits eingegebenen Werte von Restförderhöhe und Druckverlust in Sondereinbauten zu überprüfen. Nach Überprüfung wird durch die Schaltfläche "Weiter" eine erneute Rohrnetzberechnung durchgeführt.

Vorschlag eines Strang-Differenzdruckreglers

Ist die Restförderhöhe der Pumpe um das 2fache größer als die eigentlich erforderliche Restförderhöhe bzw. überschreitet die Restförderhöhe einen Maximalwert von 250 mbar², dann empfiehlt das Programm den Einsatz eines Strang-Differenzdruckreglers. Diese Empfehlung sollte angenommen werden, da es sonst zu Geräuschproblemen oder zu unnötig kleinen kV-Werten (\rightarrow schlechtere Regelbarkeit, 2-Punkt-Verhalten, Erhöhte Anfälligkeit gegenüber Verschmutzungen) kommen kann.

² ab einem Differenzdruck von 250 mbar besteht die Gefahr von Geräuschbildung

n remperaturniveau u	nd Hydraulik unbedingt empfo	hlen.	9
uswahl Strang-Differen	zdruckregler		
Stra	ng-Differenzdruckregler vorsehen	Strang-Differenzdruckregler nicht vorsehen	

Bei Betätigung der Schaltfläche "Strang-Differenzdruckregler vorsehen" wird der hydraulische Abgleich unter Berücksichtigung eines Differenzdruckreglers neu berechnet und der Einstellwert dieses Reglers auf dem Ergebnisblatt mit ausgegeben.

Folgender wichtiger Hinweis sei an dieser Stelle gegeben:

Immer wenn ein Differenzdruckregler ausgewählt wird, rechnet das Programm so, als wenn die evtl. zuvor angegebenen Sonderdruckverluste zwischen DDR und Netz angeordnet sind und nicht zwischen Pumpe und DDR. Sollten also Sondereinbauten zwischen Pumpe und DDR vorhanden sein, müssen von Ihnen wieder gelöscht werden. Dazu müssen Sie innerhalb der Excel-Benutzeroberfläche auf das Blatt tv wechseln und die Berechnung von dieser Stelle aus neu starten.

2.6. Datenausgabe

Nach der Berechnung werden das optimale Temperaturniveau, die optimierte Pumpeneinstellung sowie Rücklauftemperaturen und Thermostatventil-Einstellwerte (k_v -Werte) der einzelnen Heizkörper aufgelistet. Die Auflistung enthält des Weiteren Angaben über den Standort des Heizkörpers, entsprechend Ihrer Angabe in der Raumdaten-Aufnahmemaske. Gleichzeitig wird der dabei eingestellte Druckverlust im Auslegungsfall mit angezeigt.

Unter "einzustellende Pumpenstufe" wird die einzustellende Drehzahlstufe bei Pumpen mit mehreren Drehzahlstufen und bei stufenlos einstellbaren Pumpen ein "/" ausgegeben.

Die Berechnungsergebnisse können nun über den Excel-Befehl "Drucken" ausgedruckt werden. Es empfiehlt sich, den gewünschten Bereich zu markieren um dann nur den markierten Bereich zu drucken.

Bei jedem Berechnungsergebnis sollte überprüft werden, ob die vom Programm berechneten Kennwerte - insbesondere: Systemtemperaturspreizung, einzustellende Pumpenstufe – mit der eingesetzten BW-Kesseltechnik zu vereinbaren sind. In bestimmten Fällen berechnet das Programm Systemspreizungen von über 25 K. BW-Wandgeräte sind aufgrund ihres kleinen Kesselwasserinhalts jedoch nicht in der Lage Spreizungen von mehr als 25 K zu fahren. Die hohe Systemspreizung ist Folge einer oftmals sehr unterschiedlichen Auslegung der vorhandenen Heizkörper bezogen auf die tatsächlich benötigte Raumheizlast. So kann es passieren, dass ein oder einige wenige Heizkörper das gesamte Berechnungsergebnis verzerren und eine große Systemspreizung verursachen. In diesen Fällen muss entschieden werden, ob in den betroffenen Räumen entweder eine niedrigere Auslegungsraumtemperatur vereinbart werden kann oder ob die Heizkörper in diesen Räumen gegen größere Heizkörper ausgetauscht werden können.

3 Im Programm hinterlegte U-Werte

Im Programm hinterlegte U-Werte wärmeübertragender Begrenzungsflächen (Stand: 05.01..2004, Programmversion 3.4) in $[W/(m^2/K)]$

Baujahr	AWanAuL	AWanER	DKanUR	SDanAuL	FDanAuL	FBanUR	FBanER	FBanAuL	IWanUR	IW
1) vor 1919	1,90	2,02	1,04	3,08	1,49	1,11	2,88	1,11	3,00	3,00
2) 1919 - 1948	1,70	2,02	1,34	3,08	1,49	1,11	1,11	1,11	3,00	3,00
3) 1949 - 1957	1,44	1,88	1,34	1,41	1,60	1,01	1,01	1,01	2,90	2,90
4) 1958 - 1968	1,44	1,88	1,37	P. 43	1,40	0,84	0,90	0,84	2,80	2,80
5) 1969 - 10/1977	1,44	1,15	1,05	0,80	1,23	0,84	0,90	0,84	2,70	2,70
6) 11/1977 - 12/1983	1,45	0,90	0,45	0,45	0,45	0,80	0,90	0,45	2,60	2,60
7) 01/1984 - 12/1994	1,20	0,55	0,30	0,30	0,30	0,55	0,55	0,30	2,50	2,50
8) 01/1995 bis heute	0,50	0,35	0,22	0,22	0,22	0,35	0,35	0,22	2,40	2,40

Legende:

Bauteil	Abkürzung
01) Außenwand an Luft (AW-L)	AwanAuL
02) Außenwand an Erdreich (AW-E)	AwanER
03) Decke an nicht ausgebautes DG (DK)	DkanUR
04) Steildach an Luft (SD-L)	SdanAuL
05) Flachdach an Luft (FD-L)	FdanAuL
06) Fußboden an unbeheizten Keller (FB-U)	FbanUR
07) Fußboden an Erdreich (FB-E)	FbanER
08) Fußboden an Luft (FB-L)	FbanAuL
09) Innenwand an unbeheizten Raum (IW-U)	IwanUR
10) Innenwand (IW)	IW

4 Programmweiterentwicklung, Updates

Das Programm wird laufend weiterentwickelt. Updates und Informationen rund um das Programm befinden sich auf den Internetseiten von proKlima und können von dort aus unter <u>www.proklima-Hannover.de</u> herunter geladen werden.

ABSCHNITT II: ARBEITSHILFEN

1 Marktübliche, voreinstellbare Thermostatventile

(sortiert nach DN und kleinstmöglichem k_v -Wert)

				k _v -Wert in m³/h in Abhängigkeit von der Voreinstellung (nach DIN EN 215 bei 2 K Regeldifferenz)								
Hersteller	Тур	DN	Kopf	1	2	3	4	5	6	7	8	N
Oventrop (Ventileinsätze)	GHF	G ½"	-	0,017	0,047	0,095	0,152	0,228	0,32	-	-	-
Oventrop (Ventileinsätze)	GH	G ½"	-	0,047	0,126	0,269	0,417	0,6	0,7	-	-	-
Heimeier	F-exakt	10	ET, DT, AT	0,017	0,041	0,063	0,111	0,177	0,316	-	-	-
Danfoss	RA-UN	10	RA 2000	0,02	0,06	0,11	0,17	0,23	0,30	0,35	-	0,48
Honeywell / MNG	FV	10	-	0,02	0,04	0,11	0,19	0,25	0,29	0,32	0,35	-
Oventrop	F	10	-	0,025	0,051	0,095	0,152	0,228	0,323	-	-	-
Danfoss	RA-UR	10	RA 2000	0,03	0,03	0,06	0,11	0,18	0,24	0,31	-	0,47
Danfoss	RA-N	10	RA 2000	0,04	0,09	0,16	0,25	0,32	0,38	0,42	-	0,56
Honeywell / MNG	V	10	-	0,04	0,08	0,20	0,29	0,33	0,35	0,38	0,41	-
Heimeier	V-exakt	10	ET, DT, AT, WET	0,047	0,098	0,161	0,234	0,364	0,468	-	-	-
Oventrop	AV 6, RFV 6, ADV 6	10	-	0,055	0,170	0,313	0,446	0,56	0,65	-	-	-
Heimeier	F-exakt	15	ET, DT, AT	0,017	0,041	0,063	0,111	0,177	0,316	-	-	-
Danfoss	RA-UN	15	RA 2000	0,02	0,06	0,11	0,17	0,23	0,30	0,35	-	0,48
Honeywell / MNG	FV	15	-	0,02	0,04	0,11	0,19	0,25	0,29	0,32	0,35	-
Oventrop	F	15	-	0,025	0,051	0,095	0,152	0,228	0,323	-	-	-
Danfoss	RA-UR	15	RA 2000	0,03	0,03	0,06	0,11	0,18	0,24	0,31	-	0,47
Danfoss	RA-N	15	RA 2000	0,04	0,09	0,16	0,25	0,36	0,43	0,52	-	0,73
Honeywell / MNG	V	15	-	0,04	0,08	0,20	0,29	0,33	0,35	0,38	0,41	-
Heimeier	V-exakt	15	ET, DT, AT, WET	0,047	0,098	0,161	0,234	0,364	0,468	-	-	-
Oventrop	AV 6, RFV 6, ADV 6	15	-	0,055	0,170	0,313	0,446	0,56	0,65	-	-	-
Danfoss	RA-UN	20	RA 2000	0,02	0,06	0,11	0,17	0,23	0,30	0,35	-	0,48
Honeywell / MNG	FV	20	-	0,02	0,04	0,11	0,19	0,25	0,29	0,32	0,35	-
Oventrop	F	20	-	0,025	0,051	0,095	0,152	0,228	0,323	-	-	-
Honeywell / MNG	V	20	-	0,04	0,08	0,20	0,29	0,33	0,35	0,38	0,41	-
Heimeier	V-exakt	20	ET, DT	0,047	0,098	0,161	0,234	0,364	0,468	-	-	-
Oventrop	AV 6, RFV 6, ADV 6	20	-	0,055	0,170	0,313	0,446	0,56	0,65	-	-	-
Danfoss	RA-N	20	RA 2000	0,10	0,16	0,24	0,33	0,44	0,56	0,73	-	1,04
Danfoss	RA-N	20 UK	RA 2000	0,17	0,25	0,29	0,40	0,52	0,60	0,73	-	0,80
Danfoss	RA-N	25	RA 2000	0,10	0,16	0,24	0,33	0,44	0,56	0,73	-	1,04

2 Erkennungsmerkmale voreinstellbarer Thermostatventile

Die nachfolgende Zusammenstellung von voreinstellbaren Thermostatventilen ist nach Herstellern gegliedert. Sie soll dabei helfen, bei der Bestandsaufnahme und auch später bei den Optimierungsmaßnahmen das vorliegende Thermostatventil eindeutig zu identifizieren.

2.1. Hersteller: Heimeier

2.1.1. Köpfe

Heimeier Thermostat-Kopf Typ B

Heimeier Thermostat-Kopf Typ K

Heimeier Thermostat-Kopf Typ VD

Heimeier Thermostat-Kopf Typ WK

Heimeier Thermostat-Kopf Typ K

Thermostat-Kopf Typ VK für Ventilheizkörper

Heimeier Thermostat-Kopf Typ D

Heimeier Kopf Typ K mit Fernfühler

2.1.2. Thermostat-Ventilunterteile mit Voreinstellung (Heimeier)

V-exakt F-exakt Ventilunterteile mit genauer Voreinstellung Ventilunterteile mit genauer Feinsteinstelund ablesbaren Einstellwerten lung und ablesbaren Einstellwerten

2.1.3. Unterscheidungsmerkmale der Thermostat-Ventilunterteile (Heimeier)

Die Unterscheidung der genannten Thermostat-Ventilunterteile ist in den folgenden Grafiken zu ersehen. Der Typ V-exakt unterscheidet sich gegenüber dem Typ F-exakt durch seine Farbe (Material) für das Thermostat-Oberteil.

V-exakt F-exakt besitzt ein Thermostat-Oberteil besitzt ein Thermostat-Oberteil in Goldfarbe. in **Silberfarbe**.

Thermostat-Oberteil für V-exakt

Thermostat-Oberteil F-exakt

Gegebenenfalls kann auch eine weiße oder rote Farbmarkierung auf dem Ventil vorhanden sein. Dabei bezieht sich die weiße Markierung auf das V-exakt und die rote Markierung auf das F-exakt.

2.1.4. Erkennungsmerkmal eines Heimeier Thermostat-Ventilunterteils

Als Erkennungsmerkmal ist ein Firmenlogo auf dem Ventil zu ersehen.

2.2. Hersteller: Danfoss

2.2.1. Köpfe

Danfoss Typ RA 2650

Danfoss Typ RA 2810

Danfoss Typ RA 2652

Danfoss Typ RA 2610

Danfoss Typ RA 2850

Danfoss Typ RA 2612

Danfoss Typ RA 2022 (Behördenmodell)

Danfoss Typ RA 2020 (Behördenmodell)

Danfoss Typ RAW 5010

Danfoss Typ RAW 5012

Danfoss Typ RAW 5110

2.2.2. Thermostat-Ventilunterteile mit Voreinstellung (Danfoss)

Typ RA-UN

Typ RA-N

Thermostat-Ventilunterteile mit genauer Feinsteinstellung und ablesbaren Einstellwerten

Thermostat-Ventilunterteile mit genauer Voreinstellung

2.2.3. Unterscheidungsmerkmale der Thermostat-Ventilunterteile (Danfoss)

Die Unterscheidung der genannten Thermostat-Ventilunterteile ist in den folgenden Grafiken zu ersehen. Der Typ RA-N unterscheidet sich gegenüber dem Typ RA-UN durch die Farbe des Einstellringes.

RA-N besitzt einen gelben bzw.

Thermostat-Oberteil für RA-N

RA-UN besitzt einen **roten** Einstellring.

Thermostat-Oberteil RA-UN

2.2.4. Erkennungsmerkmal eines Danfoss Thermostat-Ventilunterteils

Als Erkennungsmerkmal dient ein **D** auf dem Ventil.

2.3. Hersteller: MNG

2.3.1. Köpfe

MNG Typ thera-3

MNG Typ thera-3 (mit Fernfühler)

MNG Typ thera-2

MNG Typ thera-2 (mit Fernfühler)

MNG Typ 2080fl

MNG Typ 2080fl (mit Fernfühler)

2.3.2. Thermostat-Ventilunterteile mit Voreinstellung (MNG)

Typ V

Thermostat-Ventilunterteile mit genauer Voreinstellung und ablesbaren Einstellwerten **Typ FV** Thermostat-Ventilunterteile mit genauer Feinsteinstellung und ablesbaren Einstell-

2.3.3. Unterscheidungsmerkmale der Thermostat-Ventilunterteile (MNG)

Die Unterscheidung der genannten Thermostat-Ventilunterteile ist in den folgenden Grafiken zu ersehen. Der Typ V unterscheidet sich gegenüber dem Typ FV durch die Farbe des Einstellringes.

Typ V besitzt einen weißen Einstellring mit schwarzer Schrift.

Typ FV besitzt einen Rotguss-Einstellring mit weißer Schrift.

2.3.4. Erkennungsmerkmal eines MNG Thermostat-Ventilunterteils

Als Erkennungsmerkmal ist ein **Firmenlogo** auf dem Ventil zu ersehen.

2.4. Hersteller: Oventrop

2.4.1. Köpfe

Oventrop Typ Uni-CH

Oventrop Typ Uni-LH (mit Fernfühler)

Oventrop Typ Uni-XH (mit Fernfühler)

Oventrop Typ Uni-DH

Oventrop Typ Uni-DH (mit Ferneinstellung)

Die Ventile werden zum Schutz beim Transport und Einbau mit Bauschutzkappen geliefert. Die Farbe der Bauschutzkappe gibt direkt sichtbar einen Hinweis auf die Baureihe

"Baureihe A" = schwarz "Baureihe AZ" = orange "Baureihe AV6" = weiß "Baureihe ADV6" = zementgrau "Baureihe RF" = blau "Baureihe F" = iot Die Vertile der Baureihen & AV/f

Die Ventile der Baureihen "A. AV 6. ADV 6. AZ, RF und F" haben identische Gehause. Die Ventileinsätze sind austauschbar.

1 "Baureihe A" Die Oventrop Ventile der "Baureihe A" habenfür alle Nennweiten den gleichen Durchflusswert.

Die "Baureihe A" ist das Standardmodell für Einrohr- und Zweirohrheizungsanlagen. Die raumweise Anpassung der Wärmeleistung erfolgt durch voreinstellbare Verschraubungen "Combi 4", "Combi 3" oder "Combi 2".

(o. Abb. "Baureihe AZ") Die Oventrop Ventile der "Baureihe AZ" entsprechen der "Baureihe A", jedoch mit größerer Durchflussleistung.

(o. Abb. "Baureihe RF") Die Oventrop Ventile der "Baureihe RF" entsprechen der "Baureihe A". Sie haben jedoch kürzere Baumaße

2 "Baureihe AV.6" mit Voreinstellung Die Oventrop Ventile der "Baureihe AV.6" sind mit einem voreinstellbaren Ventileinsatz ausgerüstet und ermöglichen dadurch eine Anpassung der Volumenströme an den geforderten Wärmebedarf. Die Ventile der "Baureihe AV.6" werden in

Die Ventile der "Bauwihe AV6" werden in Zweirohrheizungsanlagen mit normaler Temperaturspreizung eingesetzt

3 "Baureihe ADV 6" mit Voreinstellung Die Oventrop Ventile der "Baureihe ADV 6" sind mit einem voreinstellbaren Ventileinsatz ausgerüstet und ermöglichen dadurch eine Anpassung der Volumenströme an den geforderten Wärmebedarf.

Bei Demontage oder Zerstörung des Thermostaten schließt das Ventil automatisch auf 5% der Nennleistung. Durch diese zusätzliche Funktion ist die Frostschutzsicherheit gewährleistet und ein unkontrolliertes Ansteigen der Raumtemperatur ausgeschlossen.

4 "Baureihe F" mit Feinstvoreinstellung Die Oventrop Ventile der "Baureihe F" sind mit einer patentierten Feinstvoreinstellung ausgerüstet. Sie werden speziell in Heizungsanlagen mit hoher Temperaturspreizung (Fernheizanlagen) oder bei Anlagen mit kleinen Durchflüssen eingesetzt. Vorteil:

litergenaue Anpassung des Volumenstromes am Heizkörper

2.4.3. Unterscheidungsmerkmale der Oventrop-Ventileinsätze

Die Unterscheidung der Ventileinsätze ist in den folgenden Grafiken zu ersehen.

Ē

"ADV6"- Ventileinsatz mit Doppelfunktio und Voreinstellung passend für alle Thermostatventile der "Baureihen ADV6"

2.4.4. Erkennungsmerkmal eines Oventrop Thermostat-Ventilunterteils

Als Erkennungsmerkmal ist ein **OV** auf dem Ventil zu ersehen.

3 Arbeitshilfe zur Umwälzpumpenauswahl

Die richtige Auswahl der Umwälzpumpe ist für den hydraulischen Abgleich unerlässlich. Das Programm "Optimierung von Heizungsanlagen"³ gibt den einzustellenden Anlagenvolumenstrom vor. Abhängig von den Randbedingungen wird die erforderliche Förderhöhe ebenfalls durch das Programm ermittelt. Die folgende Auflistung soll als Hilfe bei der Pumpenauswahl dienen.

Im Folgenden werden exemplarisch nur Pumpen der Firma Wilo betrachtet. Die vergleichbaren Pumpen anderer Hersteller können aus den jeweiligen Austauschspiegeln abgelesen werden.

Einfamilienhäuser

bis V = $0,4 \text{ m}^3/\text{h}$ und H = 0,8 m (= 80 mbar) Wilo Star-RS 25/2⁴ \Rightarrow bis V = 0,6 m³/h und H = 1,2 m (= 120 mbar) \Rightarrow Wilo Star-RS 25/4⁴ ab V = 0,6 m³/h und H = 1,35 m (= 135 mbar) \Rightarrow Wilo Star-E 25/1-3

Es werden Einfamilienhäuser mit einem maximalen Volumenstrom von V=1,0 m³/h und einer Förderhöhe bis H = 2,35 m (= 235 mbar) betrachtet. Dies entspricht einer Gebäudeheizlast von 23 bis 29 kW (bezogen auf eine Spreizung von 20 bis 25 K). Bei höheren Heizlasten muss das Netz auf einzelne Stränge aufgeteilt werden (DDR oder mehrere Pumpen) und separat betrachtet werden.

Bei den beiden ungeregelten Pumpen ist jeweils die Stufe 1 einzustellen (Minimale Stufe). Danach muss im Programm nochmals die tatsächliche Förderhöhe, die sich durch die ungeregelte Pumpe ergibt, eingegeben werden. Diese tatsächliche Förderhöhe lässt sich mittels der beigefügten Datenblätter anhand des zugehörigen Kennlinienfelds ermitteln.

Mehrfamilienhäuser

bis V = 1,0 m ³ /h und H = 1,6 m (= 160 mbar) \Rightarrow	Wilo Star-E 25/1-3
bis V = 3,0 m ³ /h und H = 2,2 m (= 220 mbar) \Rightarrow	Wilo Star-E 25/1-5
ab V = 3,0m ³ /h und H = 2,4 m (= 240 mbar) \Rightarrow	Wilo Top-E 25/1-7

Es werden Mehrfamilienhäuser mit einem maximalen Volumenstrom von V=4,0 m³/h und einer Förderhöhe bis H=2,4 m betrachtet. Dies entspricht einer Gebäudeheizlast von 93 bis 116 kW (bezogen auf eine Spreizung von 20 bis 25 K). Bei höheren Heizlasten muss das Netz auf einzelne Stränge aufgeteilt werden (DDR oder mehrere Pumpen).

Bei den elektronisch geregelten Pumpen ist die Förderhöhe einzustellen, die durch das Programm berechnet wird. Nach Möglichkeit sollte die Regelungsvariante dp-c (Förderhöhe wird stets konstant gehalten) eingestellt werden. Die dp-c Regelungsart sollte immer dann eingesetzt werden, wenn der Druckverlust im Rohrnetz nicht so stark ins Gewicht fällt. Dies ist aufgrund der Berechnungsweise des Programms gegeben.

³ Das Programm "Optimierung von Heizungsanlagen" wurde in Zusammenarbeit von der FH BS/WF bzw. dem TWW und proKlima durch Grimme/Halper/Sobirey/Timm erstellt.

Umwälzpumpenempfehlung in Abhängigkeit des Volumenstromes und der Förderhöhe (Wilo-Pumpen)

Einfamilienhäu	iser				
Volumenstrom	Einzustellende	Тур	eingestellte Stufe	Leistungsaufnahme	Preis
	Foldellione				(UVP)
	0,50 m	Star-RS 25/2	1	17 W	106€
$0.20 \text{ m}^{3/h}$	0,65 m	Star-RS 25/2	1	17 W	106€
0,20 11-711	0,80 m	Star-RS 25/2	1	17 W	106€
	0,95 m	Star-RS 25/2	1	17 W	106€
	0,70 m	Star-RS 25/2	1	19 W	106€
$0.40 \text{ m}^{3/b}$	0,85 m	Star-RS 25/4	1	27 W	108€
0,40 111-/11	1,00 m	Star-RS 25/4	1	27 W	108€
	1,15 m	Star-RS 25/4	1	27 W	108€
0,60 m³/h	1,20 m	Star-RS 25/4	1	28 W	108€
	1,35 m	Star-E 25/1-3	-	34 W	149€
	1,50 m	Star-E 25/1-3	-	36 W	149€
	1,65 m	Star-E 25/1-3	-	37 W	149€
	1,50 m	Star-E 25/1-3	-	38 W	149€
$0.80 \text{ m}^{3/\text{h}}$	1,65 m	Star-E 25/1-3	-	39 W	149€
0,00 111 /11	1,80 m	Star-E 25/1-3	-	41 W	149€
	1,95 m	Star-E 25/1-3	-	42 W	149€
	1,90 m	Star-E 25/1-3	-	43 W	149€
$1.00 \text{ m}^{3/\text{h}}$	2,05 m	Star-E 25/1-3	-	43 W	149€
1,00 111 /11	2,20 m	Star-E 25/1-3	-	44 W	149€
	2,35 m	Star-E 25/1-3	-	44 W	149€

Mehrfamilienhäuser

Volumenstrom	Einzustellende	Тур	eingestellte Stufe	Leistungsaufnahme	Preis
	Förderhöhe			im Mittel	(UVP)*
	0,70 m	Star-E 25/1-3	-	33,8 W	149€
$1.00 \text{ m}^{3/\text{h}}$	1,00 m	Star-E 25/1-3	-	35,8 W	149€
1,00 111 /11	1,30 m	Star-E 25/1-3	-	37,8 W	149€
	1,60 m	Star-E 25/1-3	-	40,8 W	149€
	1,80 m	Star-E 25/1-5	-	51,3 W	171€
2,00 m³/h	2,00 m	Star-E 25/1-5	-	53,3 W	171€
	2,20 m	Star-E 25/1-5	-	54,3 W	171€
	2,40 m	Star-E 25/1-5	-	56,3 W	171€
	1,80 m	Star-E 25/1-5	-	65,8 W	171€
$3.00 \text{ m}^3/\text{h}$	2,00 m	Star-E 25/1-5	-	71,2 W	171€
5,00 m /n	2,20 m	Star-E 25/1-5	-	72,4 W	171€
	2,40 m	Top-E 25/1-7	-	61,4 W	528€
	1,80 m	Top-E 25/1-7	-	63,0 W	528€
$4.00 \text{ m}^{3/\text{b}}$	2,00 m	Top-E 25/1-7	-	65,5 W	528€
4,00 111 /11	2,20 m	Top-E 25/1-7	-	69,5 W	528€
	2,40 m	Top-E 25/1-7	-	73,0 W	528€

* Keine Gewähr auf die unverbindliche Preisempfehlung Stand März 2003

Kennliniendiagramme der empfohlenen Pumpen

4 Druckverluste üblicher Sondereinbauten

Druckverlustdiagramm eines beispielhaft ausgewählten Ultraschall-Wärmemengenzählers

Nenndurchfluss q_p 0,6 bis 10

Druckverlustdiagramm eines beispielhaft ausgewählten Schmutzfängers

Druckverlustdiagramm eines Beispielhaft ausgewählten Luftabscheiders

Druckverlustdiagramm einer beispielhaft ausgewählten Rückschlagklappe

Druckverlustdiagramm einer beispielhaft ausgewählten Schwerkraftbremse (Sperrventil)

Druckverlustdiagramm Wärmeübertragers ausgewählten

Platten-

5 Normheizleistungen üblicher Heizflächen

5.1. Flachheizkörper (Plattenheizkörper)

Flachhe	izkörper								
Ahmaes	sungen und	Typen	ezeichnung	en (Herstellera	ngaben)	instantion and instantion of the	A CONTRACTOR OF THE		
L	ungen und	Typen	Jezeiciniung	10	igason	22			
1		-			AUUUUU				7
	ľ ł			11	-	3	nnnni		a
	Z	I	1	T Sthan	000				-
	p.1								7
	25			21			UUUUU		
Typenber	zeichnung: Anzahl d	er Konve	ktorbleche H	1 Place		0	00000		
	- Anzahl d	er Platte	n/	+ Plann					- L
Bauläng	ten: L = 400	- 3000	mm, Bautiefe	T in mm und E	Bauhöhe Hinn	nm (→ Tab. 35	2.1 und 352.	2)	
Einsatzt	pereich: Heiz	mittel V	Vasser bis 0n	_{Nax} = 120 °C uni	$d p_{amax} = 10 ba$	ir (für Heizmitte	al Dampt kei	ne Gewahn	eistung)
Tab. 35	2.1: Wärme	leistung	g in W/m bei	senkrecht pro	filierten Flachl	neizkörpern	- Contractor	(Herstelle	rangaben
Höhe	Naben-	Тур	Exponent	à 10	Warmeleistung	à	Anstrich-	Wasser-	Masse
H	N			75/65/20 °C	70/55/20°C	55/45/20 °C	A'	V	m'
in mm	in mm		n	in W/m	in W/m	in W/m	in m ² /m	in l/m	in kg/m
		10	1,25	436	353	229	0.82	2.7	11,6
350	300	11	1,25	605	489	475	2,15	2,7	20.1
0.00	0.00	22	1,28	1102	887	569	4,29	5,4	23,1
		33	1,30	1566	1256	800	6,44	8,1	34,2
		10	1,25	808	651	419	3,08	3,5	19,0
500	450	21	1,30	1212	972	619	4,25	7,0	28,5
		33	1,29	2124	1701	1079	9,25	10,5	48,7
		10	1,27	683	551	354	1,40	4,0	17,4
000	EE0	11	1,28	943	759	487	3,72	4,0	22,1
600	000	22	1,30	1694	1359	865	7.44	8,1	39,0
-		33	1,31	2461	1970	1250	11,16	12,1	58,1
	1 A A	10	1,29	978	786	502	2,11	5,6	24,3
900	850	21	1,30	1961	1573	1002	7,74	11,3	49,9
		-22	1,32	2355	1882	1190	11,26	11,3	57,8
Bautief	e T: Typ 10	/11 ⇒ 7	= 65 mm	Тур	$21/22 \Rightarrow T = 1$	00 mm	Typ 3	$3 \Rightarrow T = 155$	mm
Tab. 35	2.2: Wärme	leistun	g in W/m bei	glattwandiger	n Flachheizkör	pern		(Herstelle	rangaben
Höhe	Naben-	Тур	Exponent		Wärmeleistung		Anstrich-	Wasser-	Masse
	abstand		1 8 P	qn ¹⁾	q TO ISE IDO DO	q FE/AE DO DO	fläche	inhalt	- Internet
H	in mm		n	15/65/20°C	in W/m	55/45/20 C	in m ² /m	in I/m	in ka/m
	and a decide	10	1,25	368	298	193	0,75	1,4	12,2
	000	11	1,26	531	429	277	1,97	1,4	14,5
350	300	21	1,29	1018	819	423	4,00	4,1	20,4
		33	1,29	1488	1195	764	6,04	6,8	33,4
		10	1,26	500	404	261	1,11	1,8	17,2
500	450	21	1,29	1124	903	577	4,20	5,3	29,4
		22	1,29	1432	1150	735	6,12	5,3	33,2
		10	1.26	588	475	307	1.28	2.0	20.3
	1000	11	1,29	869	698	446	3,66	2.0	25,0
600	550	21	1,29	1318	1059	864	5,06	6,1	39,8
		33	1,31	2303	1844	1170	11,22	10,1	58,4
		10	1,28	847	682	437	1,92	2,8	29,7
900	850	21	1.33	1843	1471	927	7,83	8,4	52,9
		22	1,32	2269	1814	1147	11,63	8,4	60,1
		33	1.33	3232	23/9	1020	11,00	14,1	01,0

5.2. Stahl- und Gussradiatoren

5.3. Stahl-Röhrenradiatoren

Radiatoren													
Stahlrö	hrenradia	atoren		Ventilau	sführung:					10			
	45	35 N 35	T C Rp 1%	S 20,5 Voriaut	G 3/4 au8en								
Tab. 3	53.1: Norr	nwärme	eleistung å	in W/Glie	d von Stahl	röhrenra	adiatoren,	Rohr-Ø	= 25 mm	(Herstell	erangaben)		
Hõhe H	Naben- abstand N	Tiefe T	Wārme- leistung ġn ¹⁾ in W/Glied	Wasser- inhalt V	Masse m' In kg/Glied	Höhe H	Naben- abstand N	Tiefe 7 in mm	Warme- leistung gn ¹⁾ in W/Glied	Wasser- inhalt V in I/Glied	Masse m' In kg/Glied		
190	120	65 105 145 65	14 20 26	0,28 0,40 0,52 0,34	0,32 0,52 0,71 0,42	900	830	65 105 145 185	67 89 112 138	0,84 1,25 1,65 2,05	1,33 2,03 2,73 3,44		
260	190	105 145 185 225	26 33 42 47	0,48 0,63 0,78 0,93	0,67 0,91 1,16 1,40		930	225 65 105 145	73 98 124	2,45 0,92 1,37 1,81 2,25	4,14 1,47 2,25 3,02 3,79		
300	230	65 105 145 185 225	22 31 40 48 57	0,37 0,53 0,69 0,86 1,02	0,48 0,75 1,03 1,30 1,57	1200	1130	65 105 145	151 180 86 116 147	2,69 1,08 1,60 2,13	4,56 1,76 2,67 3,59		
400	330	65 105 145 185 225	28 41 52 64 75	0,45 0,65 0,85 1,06 1,26	0,62 0,97 1,31 1,66 2,00	1500	1430	65 105 145	179 209 106 143 180	2,65 3,17 1,32 1,96 2,60	4,50 5,42 2,19 3,31 4,44 5,7		
500	430	65 105 145 185 225	37 51 65 80 94	0,53 0,77 1,01 1,26 1,50	0,76 1,18 1,60 2,01 2,43	2000	1930	65 105 145	215 250 140 189 237	3,88 1,72 2,56 3,40	6,70 2,90 4,38 5,87		
600	530	65 105 145 185 225	44 60 77 95 113	0,61 0,89 1,17 1,45 1,74	0,91 1,39 1,88 2,37 2,86	2500	2430	185 225 65 105 145	282 330 174 236 295	4,24 5,08 2,12 3,16 4,19	3,61 5,45 7,29		
750	680	65 105 145 185 225	55 75 95 117 137	0,73 1,07 1,41 1,75 2,10	1,12 1,71 2,31 2,90 3,50	1) Nor Heiz	mwärmele zkörperext	185 225 istung na ponent n	347 403 ach DIN EN = 1,3	5,23 6,27 442 bei 73	9,13 10,97 5/65/20 °C		

Heizkörper-Auslegung	adiator :	sizing						
Fensterbank-Stahlröhrenradiatoren								(Herest)
Abmessungen	Tab. 3	54.1: Nori	nwärme	eleistung vo	n Fenste	rbank-Rad	latoren	(Herst.)
	Höhe	Glieder	- Läng	abstand	Tiefe	Wärme- leistung	Wasser- inhalt	Masse
	Н		L	N in mm	in mm	qn' in W	in I	in ka
	in mm		in m	III	10 1011	0.05	10.4	22.8
See 2 See 2			150	0 1430	185	1088	13.0	27.3
			100	W FIGO	225	1284	15,5	31,8
					145	1220	13,6	28,4
<u> </u>	180	4	200	0 1930	185	1466	17,0	34,4
The second se				_	225	1731	20,3	40,3
			260	0 0420	145	1556	20.9	35,8
			200	2430	225	2209	25,1	50,5
			-		145	1086	13.0	27.2
			150	0 1430	185	1306	16,2	32,8
140					225	1528	19,4	38,5
80					145	1435	17.0	34,3
	225	5	200	1930	185	1724	21.2	41.7
				_	225	2060	20,4	40,2
dd 8			050	0000	145	1868	26.2	43,1
dodb 1			230	2430	225	2627	31.4	61,5
		-			145	1306	15,6	31,6
			150	1430	185	1516	19,5	38,4
					225	1783	23,3	45,2
		4	100		145	1711	20,4	40.2
	270	6	200	1930	185	2043	25,4	49,1
白白。			_	_	446	2400	25.2	50,0
ġ,			250	2430	185	2608	31.4	61.4
100					225	3066	37,6	72,5
200					145	1465	18,2	36,1
200			150	1430	185	1758	22,7	44,0
		-	-	_	225	2049	21,2	51,9
			0.00	1020	145	1975	23,8	40,1
Eleventethematch (- Tab. 265.2)	315	- C	200	1930	225	2763	35.5	66.8
Einsatzbereich (Tab. 555.5)				_	145	2520	29.4	57.7
1) Normwärmeleistung nach DIN EN 442	1.1		250	2430	185	3024	36,6	70,6
bei 75/65/20 °C, HK-Exponent n = 1,3					225	3524	43,9	83,4
Headbuch Redistoren	1	A second	WWWW E	HIT THE REAL	12 Sector		14月1日日	
Handiden-Hadiatoren				alalatung	an Handt	uch Radia	toren	Horstell
Abmessungen	1ab. 3	54.2: NO	niwarin	eleistung v	ou rianu	ucir-naula	Loren 1	(ICIDICIL
100 100 33 55	Höhe	Naben-	Breite	Exponent	Warm	eleistung	Wasser	Mass
71.5 1	10	abstand	1		10/00/20	d 10/05/24	V	m
1476	in mm	in mm	in mm	11	in W	in W	int	in ka
	are trained	451	516	1.22	406	292	2.70	7.90
1005		551	616	1,21	482	347	2,88	9,08
	721	701	766	1,19	595	431	3,15	10,8
701		951	1016	1,17	781	569	3,60	13,80
141		451	516	1,24	588	420	4,00	12,20
	1098	551	616	1,22	698	502	4,46	13,9
	1000	701	766	1,19	862	625	5,15	10,5
120	-	951	1016	1,15	1133	545	0,00 E 40	15 7
R(V) V(R) 0		451	516	1,25	006	649	5,40	18.0
+intia 1 1	1475	701	766	1.21	1119	806	6.55	21.5
(C) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		951	1016	1,18	1470	1068	7,70	27,3
40.5 40.5		451	516	1.26	934	664	6.80	19,3
Einsatzbereich (→ Tab. 355.3)	1000	551	616	1,25	1108	790	7,26	22,2
1) Normwärmeleistung nach DIN EN 442	1852	701	766	1,23	1368	980	7,95	26,5
bei 75/65/20°C, HK-Exponent n = 1,3		951	1016	1,21	1798	1296	9,10	33,80

5.4. Fensterbank-Stahlröhrenradiatoren und Handtuch-Radiatoren

Konvektoren										an nº a				
Konvektoreinbau in Nischen	Tab. 3	357.1: Konvektoren-Wärmeleistung in Heizkörpernischen Bauhöhe H = 70 mm, Bautiete T = 150 mm, n = 1,41 (Herstellerangaben)												
+	Tiefe	Lange		Nor	mwärn	neleistu	na á, in	W 1)		Masse	Wasser-			
1 h3	1 (0-10	and get	$h_1 = 40$	0 h1 =	= 500	$h_1 = 6$	00 h1 :	= 800 /	h1 = 900		inhalt			
	T	4	$h_2 = 10$	10 h2=	= 100	$h_2 = 1$	00 h2:	= 100 /	2= 100	m	V			
			$h_3 = 10$	00 ha	= 100	$h_3 = 1$	00 h3	= 100	$h_3 = 100$					
h1 h4	in mm	in mm	$h_4 = 20$	10 ha =	= 300	$h_4 = 4$	00 h ₄	= 600	$h_4 = 700$	in kg	in I			
	150	1000	923	1	113	1271	3 1	508	1580	13,1	1,3			
0.00	150	1200	1129	13	361	1563	2 1	844	1932	15,7	1,4			
1 h2	150	1400	1334	1	608	1846	3 2	179	2283	18,2	1,6			
Korivektor	150	1600	1642	1	979	2273	2 2	682	2810	20,8	1,7			
a second s	150	1800	1744	2	103	2414	1 2	849	2985	23,4	1,8			
h1 = Nischenhöhe in mm	150	2000	1949	2	350	209		520	3330	20,0	2.1			
$h_3 = Luftaustritt in mm$	150	2200	2100	3	093	355		190	4390	33.7	23			
h4 = wirksame Schachthöhe	150	3000	2975	3	587	4114	3 4	860	5092	38,9	2,6			
Baulánge: L = 0.5 bis 6.0 i	m Finsat	zhereich	<i>a</i> =	120 °C	$D_{2} = 0$	bar P	ni)fdruck	$D_{1} = 6.5$	bar					
¹⁾ Normwärmeleistung nac	h DIN EN	1 442 bei	75/65/20	0°C; Un	rechni	ung auf	andere	Tempera	turen (→ S	5. 356)	_			
Standard-Konvektoren			1.00							lus in				
Abmessungen von Stand konvektoren	dard-	Tab. 35	7.2: Nor nac	mwärn h DIN E	eleisti N 442	ung ởn ¹	in W/m	von Sta	andard-Ko	onvektor lersteller	en angaben)			
	[Höhe	Tie	fe	Exp	onent	Wärme	leistung	Wasser-	Ma	isse			
				WSV02		WSV02		WSV02	inhalt		WSV02			
		H in mm	T in mm	T in mm	n	n	q _n in W/m	à₀ in W/m	V' I/m	m' in kg/m	m' in kg/r			
Fensteinselte	nen	280			1.33	1.32	857	1168	4.80	23.00	37.85			
Strahlungsschirm	20	210	70	1.10	1,30	1,29	696	965	3,60	17,35	28,35			
nicht wasserführend	H.	140	13	143	1,27	1,26	528	733	2,40	11,50	18,85			
	Y	70			1,24	1,23	356	477	1,20	5,70	9,35			
		280			1,36	1,34	1420	1686	7,60	38,30	53,15			
	amellen	210	124	204	1,35	1,32	1195	1402	5,70	28,70	39,80			
Wassert	führende	140	1.04	204	1,32	1,29	914	1072	3,80	19,10	26,45			
Profilrot	xe	70	_	_	1,20	1,24	589	706	1,90	9,45	13,10			
Anschluss		280			1.39	1,36	1990	2177	10,40	53,90	68,75			
N Barris	da .	210	100	286	1,37	1,35	1686	1831	7,80	40,35	51,45			
36		140	190	200	1,32	1,31	1284	1406	5,20	26,85	34,20			
		70			1,18	1,24	800	900	2,69	13,30	16,95			
		280			1,41	1,38	2547	2637	13,00	69,35	84,20			
		210	257	207	1,38	1,36	2145	2272	9,75	51,90	63,00			
		140	201	SET	1,32	1,31	1613	1743	6,50	34,50	41,85			
Nabenabstand N in mm:		70	-	-	1,17	1,23	972	1060	3,25	17,05	20,70			
Anschluss Rp $3/8$, $(1/2)$: $N = H$	(- 36 mm	1) Norm	värmelei	stung n	ach DI	NEN 44	12 bei 75	/65/20 °	C; 2 WSV	0 95: Au	sführung			
Anschluss Rp $3/4$: N = H Reudenset: L = 500 bis 6000 p	f - 52 mm	mit int	egrierter	n Strahl	enschu	utz an d	er Fenst	erseite (-	- S. 350)					
Einsatzbereich:	130-116													
$\partial_{\text{max}} = 120 ^{\circ}\text{C}, p_{\text{S}} = 5 \text{bar}$		Bau-	T = 143	mm	T = 73	mm	T = 134	mm 7	= 196 mr	n T = 3	257 mm			
Prüfdruck p1 = 6,5 bar		tiefe:	2-rohng V	VSVO)	(2-ro)	vrig)	(3-roh	rig)	(4-rohrig)	(5-	rohrig)			
Anordnung in Bodenkan	älen		13	8	100	1	3 m	13	2	100				
			33	1	8	1	15/		SB.		15-			
1000 million - 100				10	1/	194	1/1/	48		43				
Verglasung			1/		/		1/l		7//U					
TY & T ANI	20		Y				1				$\forall /$			
	EU								N.		1			
		Tiefe T t	ür weiter	re WSV(D-Ausf	ührunge	en (→ Ta	b. 357.2)	_				
*				1					1.1.14					
	Konvektor	1		E	aumat	se: Maß	X = Mal	x = mir	ndestens E	sautiete)				
Y		4	N	linderlei	stuna:	• Bei	offener A	nordnun	g in Bode	nkanälen	ca. 20 %			
· · ·						· Bei	Abdecku	ng mit G	littern mit	70 % frei	em			
						Que	rschnitt i	über den	n Bodenka	inal ca. 3	5 %			

5.5. Konvektoren und Standard-Konvektoren

AUFNAHMEFORMULARE

proKlima Der enercity-Fonds	Auf	nahmef	ormular I	ОРТІМА		XXXY					
A) Antragstelle	er - Da	aten									
Name :											
Vorname :											
Straße :											
Hausnummer :					Telefon :						
PLZ :					Telefax :						
Wohnort :					Email :						
B) Gebäudedat	ten										
1. Gebäudeanschrift:											
Straße :											
Hausnummer :											
PLZ :											
Ort :											
2. Gebäudeart u	ind Ba	ujahr:									
Einfamilienhaus	0	oder	Mehrfamilienhaus	0							
Einzelhaus	0	oder	Reihenhaus	0							
windstark	0	oder	windschwach	0							
freie Lage	0	oder	normale Lage	0	Gebäudebaujahr:						
3. Überwiegend	er Fer	stertyp:									
Verglasungsart:				F	Rahmenmaterial:						
1-Scheiben-Verg	lasung	(U=5,5)	0	F	lolz	0					
2-Scheiben-Isolie	ervergl	asung (U=3,	,0) O	Α	luminium	0					
2-Scheiben-Wär	2-Scheiben-Wärmeschutzverglasung (U=1,5) O Aluminium gedämmt O										
3-Scheiben-Isolie	3-Scheiben-Isolierverglasung (U=2,1) O Kunststoff O										
3-Scheiben-Wär	3-Scheiben-Wärmeschutzverglasung (U=0,8) O Kunststoff gedämmt O										
4. Heizungsko	ompor	enten									
Fußbodenheizun	ig vorh	anden	0								

proKlima Der enercity-Fonds Aufnahmeformul	ar II OPTIMUS: DETIMAL ENERGIE NUTZEN
C) Daten des Heizkreises	
Nummer/Bezeichnung des Heizkreises:	
1. Art der Wärmeerzeugung:	
Gas/Öl O	Fernwärme O
maximal mögliche Vorlauftemperatur:	°C maximal mögliche Vorlauftemperatur: °C
	einzuhaltende Rücklauftemperatur: °C
2. Pumpen	
Hersteller:	
Тур:	
stufenlos einstellbare Restförderhöhe	0
nicht stufenlos einstellbare Restförderhöhe	0
3. Einbauten und längster Strang	
Differenzdruckregler vorhanden O	Eingestellter Druck in mbar
internes Überströmventil vorhanden O	Ansprechdruck in mbar
externes Überströmventil vorhanden O	Ansprechdruck in mbar
Sondereinbauten vorhanden O	
Länge des längsten Heizungestrang im Heiz	
4. Notizen, Skizzen (Handskizze des Anlagensche	emas)

pr	oK er en	lima ercity-Fonds	Aufnah	meform	ular I	11			0		MUS GIE NUTZEN	\mathbb{T}	XX	XV		
	Pa	umdatan	alatt													
יין	Γα	umuatem	JIALL											r		
1.	Wo	hnung und														
	Rau	um-Nr. und	Bezeichn	nung										1		
								1						r		
2.	Α	llgemein:	Fläch	ne des Bode	ns in m²:				lst der R	aum kubisc	h? ja	\rightarrow	nein			
				Raumhá	ihe in m			1	Wenn	nicht kubis	sch					
				Raamin	, no in m.			l	Raumv	olumen in i	m³:					
3.	Beg Art	grenzungsf grenzungsfläche: z. l d. angrenzenden Ra	Erdreich Innenwand, DK	oder Räu = Decke, FB = F JR = unbeh, Rau	um Tläche m	e m. ar e des Fußbo	nderen To	emperatu	ren grenz	zen (Δt > :	5K):					
						1 Fens	Fenster / Tür 2 Fenster / Tür 3 Fenster / Tür 4 Fenster / Tü									
			Fläche in	Art d	es	1.1 0113			2.1 0113		0.1010		4.1010			
	Lfd. Nr.	Begrenzugs- fläche	m² (inkl. Fenster)	angrenz "Raum	enden nes"	Breite in m	Höhe in m	В	Breite in m	Höhe in m	Breite in m	Höhe in m	Breite in m	Höhe in m		
	1	FB				\times	$\mathbf{\mathbf{\bigvee}}$	\sum	\times	\ge	\searrow	$\mathbf{\mathbf{X}}$	\ge	\times		
	2	DK				Fenster	Tür	þ	Fenster	Tür	Fenster	Tür	Fenster	Tür		
						Fenster	Tür		Fenster	Tür	Fenster	Tür	Fenster	Tür		
	3															
	4					Fenster	lur	Η	Fenster	lur	Fenster	lur	Fenster	Iur		
	5					Fenster	Tür	Ρ	Fenster	Tür	Fenster	Tür	Fenster	Tür		
	6					Fenster	Tür		Fenster	Tür	Fenster	Tür	Fenster	Tür		
	7					Fenster	Tür		Fenster	Tür	Fenster	Tür	Fenster	Tür		
	'					Fenster	Tür		Fenster	Tür	Fenster	Tür	Fenster	Tür		
	8					Fenster	Tür		Fenster	Tür	Fenster	Tür	Fenster	Tür		
	9					Expeter	Tor		Fonstor	Tor	Fonstor	Tor	Eanator	Tär		
	10					rensier			renster		renster		Pensier			
4.	Hei	zflächen:														
	-					-						_				
		Heiz HK Bauart (z. 1	Korper Nr. B. Platten-Hk. G	uss- oder		1	1			2						
		Stahl-Radiato	r, Konvektor, Fb	Hzg.)												
	Bau	größe d. HKs oder Normleistu	(z. B. 22x600x90	0 o. 14/250/680) °C) in W												
	Ent	fernung zur P	umpe (mittel =	= 3366 % der	nah	mittel	weit		nah	mitte	l weit	nah	mittel	weit		
	_	Länge des	längsten Strang	gs)								_				
		Bez	eichnung													
		Fabrikat, Ty	p, Bauart ur	nd DN												
		Vorei	instellbares	115	ja		nein		ja		nein	ja		nein		
		Therm	ostatventil?													
		Falls voreir Voreinstellui	nstelibar, akt ng (z. B. N o	der 3)												
	Rücklaufverschraubung ja					\leftrightarrow	nein	i ja		\rightarrow	nein	ja	\leftrightarrow	nein		
	Wu	ein Irde eine Vore	stellbar? einstellung a	n dem RL-	ia		nein	_	ia ()		nein	ia		nein		
	Ventil vorgenommen? Image: March and a state of the															
	Anmerkungen: (von den Angehen im Formular abweichende Daten fürz. P. Fonster Außen ist Innertürze gewis Dimmung aber alter D. Drum isterfisch ist 4.000															
										June Bandin	J.					
I																
I																
I																

IMPRESSUM

Dieses Handbuch wurde vom Enercity Klimaschutzfond proKlima, Hannover in Zusammenarbeit mit dem Trainings- & Weiterbildungszentrum Wolfenbüttel e.V. entwickelt.

Es wurde im Rahmen des von der Deutschen Bundesstiftung Umwelt DBU geförderten Projektes "OPTIMUS" (OPTimierung von Heizungssystemen durch InforMation und Qualifikation zur nachhaltigen NutzUng von EnergieeinSparpotenzialen) verwendet und teilweise ergänzt.

Das Handbuch kann kostenlos als unverändertes Gesamtwerk (nicht in Auszügen) weitergegeben werden, wenn "proKlima" als Bezugsquelle benannt werden. Kommerzieller Vertrieb ist nicht gestattet.