
Wärmepumpen

- Wärmequellen (heutige Verbreitung)
 Luft (10%)
 Erdreich (80%)
 Grundwasser (10%)
- Nutzung der Erdwärme: flächig verlegte Rohrschlangen in ca. 1m Tiefe heute auch Tiefenbohrungen mit Erdspießen bis ca. 60...80m
- Thermodynamische Grundlagen (einfaches Anlagenschema):

- am Verdampfer:
 Kältemittelverdampfungstemperatur T₀ muß unter der der Wärmequelle liegen,
 z.B. unter 10°C bei Grundwasser; p₀ richtet sich nach T₀
- \bullet am Kondensator Kältemittelkondensationstemperatur T_C muß über gewünschter Heizwassertemperatur liegen, z.B. über 40°C bei 40/30-FB-Heizung; p_C richtet sich nach T_C

 $\bullet \quad \text{Kreisprozess idealisiert im T,s-Diagramm } (\mathsf{T}_0 {\approx} \mathsf{T}_{\text{amb}})$

• Exergie: $E_Q = \Delta S \cdot (T_C - T_0)$ zugeführt im Kompressor

Anergie: $B_Q = \Delta S \cdot (T_0 - 0K)$ aus dem Erdreich entnommen

Wärme: $Q = E_Q + B_Q$ Nutzen

• Carnot-Leistungsziffer für den idealisierten Prozess (Verhältnis von Leistungen)

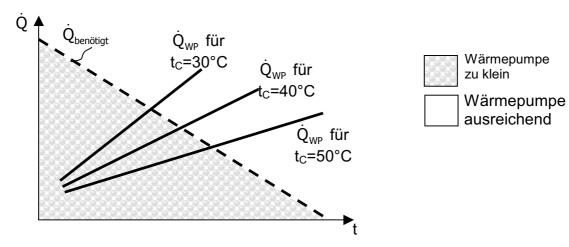
$$\epsilon_{c} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{\dot{Q}_{ab}}{P_{el}} = \frac{\Delta S \cdot T_{C}}{\Delta S \cdot (T_{C} - T_{0})} = \frac{T_{C}}{T_{C} - T_{0}}$$

exergetischer Gütegrad zur Bewertung des realen Prozesses

$$\zeta = 0,2...\overline{0,5}...0,7$$

• Leistungsziffer für den realen Prozess (Verhältnis von Leistungen)

$$\epsilon_{\text{real}} = \epsilon_{\text{c}} \cdot \zeta$$


• wann wird ε_{real} hoch?

T_C niedrig

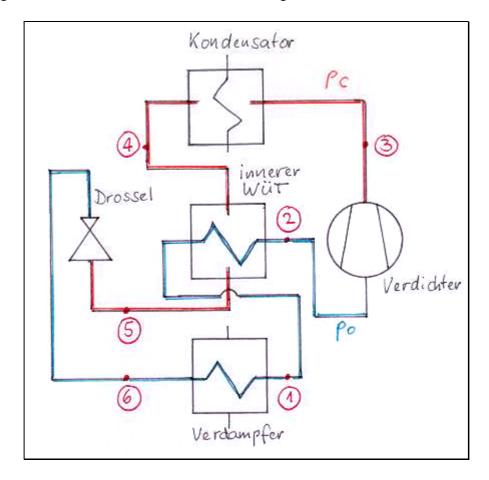
- Niedrigenergiehaus, Fußboden-Heizung

T_C-T₀ niedrig

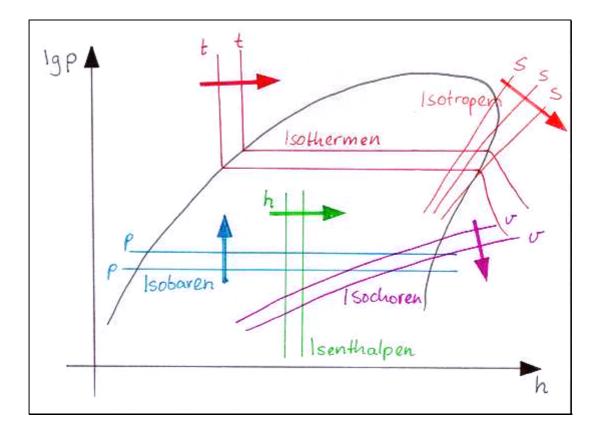
- höhere Temperatur des Wärmespendermediums (Winter -> Übergangsjahreszeit -> Sommer); günstig z.B. Tiefenbohrungen mit konstanter Temperatur um 12°C als schwankende Lufttemperaturen
- Wie erfüllt die Wärmepumpe Anforderungen des Gebäudes?

Bereich "Wärmepumpe zu klein" Bereich "Wärmepumpe ausreichend"

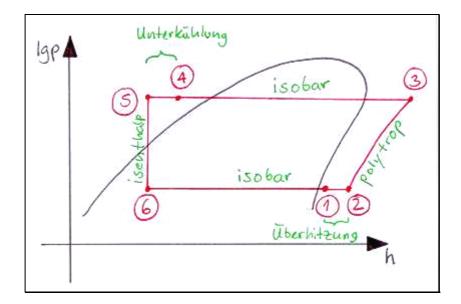
- zusätzlicher WE nötig


- Pumpe taktet

Gegenläufige Verhältnisse bei Bedarf und Bedarfsdeckung: zum Winter hin wird eine höhere Vorlauftemperatur für die Heizung gebraucht, gerade dann sinkt die Leistung der WP durch geringere Außentemperaturen


• Arbeitszahl für den realen Prozess (Verhältnis von Energien)

$$\beta = \frac{Q_{\text{ab}}}{P_{\text{el}}}$$


Anlagenschema mit innerem Wärmeübertrager:

• Linien im lgp,h-Diagramm:

• Prozess im lgp,h-Diagramm (Labor):

Aufbau des Expansionsventils:

Beispiel: Vergleich Wärmepumpe und Gas-Brennwertkessel

a) Eine Außenluftwärmepumpe soll bei 3°C Außenlufttemperatur eine Wasservorlauftemperatur von 35°C erzeugen. Temperaturdifferenz in den Wärmeübertragern sei im Mittel 5K. Exergetischer Gütegrad der Anlage für diesen Fall sei 0,5. Gesucht ist die reale Leistungsziffer.

$$\begin{split} & T_{\text{C}} = t_{\text{Vorlauf}, \text{Heizung}} + \Delta t_{\text{W\"{U}T}} = 35^{\circ}\text{C} + 5\text{K} = 40^{\circ}\text{C} \\ & T_{\text{O}} = t_{\text{Außenluft}} - \Delta t_{\text{W\"{U}T}} = 3^{\circ}\text{C} - 5\text{K} = -2^{\circ}\text{C} \end{split}$$

$$\epsilon_{\text{real}} = \zeta \cdot \epsilon_{\text{C}} = \zeta \cdot \frac{T_{\text{C}}}{T_{\text{C}} - T_{\text{0}}} = 0, 5 \cdot \frac{(40 + 273, 15)K}{(40 - (-2))K} = 3, 7 \; .$$

b) Eine Wärmepumpe hat eine Arbeitszahl nach Herstellerangaben (Prüfstand) von β_{Test} =4,7. Unter durchschnittlichen Bedingungen ergibt sich für das Jahresmittel aber eine Arbeitszahl von $\beta_{Betrieb}$ =3,4.

Ein Gaskessel hat nach Herstellerangaben (Prüfstand) einen Jahresnutzungsgrad bezogen auf den Heizwert von η_{Test} =1,08. Unter durchschnittlichen Bedingungen ergibt sich für das Jahresmittel aber ein Nutzungsgrad von $\eta_{Betrieb}$ =0,95.

Berechnen Sie die nötigen Primärenergieeinsätze für die Versorgung eines Einfamilienhauses mit 10000 kWh/a Wärme. Beachten Sie die Primärenergiefaktoren. Führen sie die Rechnung jeweils mit β und η laut Hersteller und Realität durch.

Wärmepumpe	Gaskessel
β=4,7 (3,4)	η=1,08 (0,95)
$W_{el,zu} = \frac{Q_{Nutz}}{\beta} = \frac{10000kWh/a}{4,7(3,4)}$ =2100 (2900) kWh _{el} /a	$Q_{F,zu} = \frac{Q_{Nutz}}{\eta} = \frac{10000 \text{kWh/a}}{1,05(0,95)}$ =9300 (10500) kWh _{Gas} /a
p _{Primär,el} =3,0	p _{Primär,Gas} =1,07
$Q_{Prim\ddot{ar},zu} = W_{el,zu} \cdot p_{Prim\ddot{ar},el}$	$Q_{Prim\"{ar},zu} = Q_{F,zu} \cdot p_{Prim\"{ar},Gas}$
=6300 (8700) kWh/a	=100000 (11200) kWh/a

c) Für die beiden Varianten ist eine grobe Abschätzung der jährlichen Kosten zu machen (Investition, Betrieb, Wartung). Die Anschaffungskosten sollen bei der WP für Gerät und Tiefenbohrungen gelten. Annuität sei 8% pro Jahr. Für die Verbrauchskosten mit den realen Daten aus b) rechnen.

Wärmepumpe	Gaskessel
Investition	
K _{Invest} =20000 DM	K _{Invest} =6000 DM
K _{Invest,a} =a·K _{Invest}	K _{Invest,a} =a·K _{Invest}
=8%/a · 20000DM	=8%/a · 6000DM
=1600 DM/a	=480 DM/a
Betrieb	
Preis für Elektroenergie:	Preis für Energie aus Gas:
k _{el} =0,15 DM/kWh _{el}	k _{Gas} =0,05 DM/kWh _{Gas}
K _{Betrieb,a} =k _{el} ·W _{el,zu}	K _{Betrieb,a} =k _{Gas} ·Q _{F,zu}
=0,15 DM/kWh _{el} · 2900 kWh _{el} /a	=0,05 DM/kWh _{el} · 10500 kWh _{el} /a
=435 DM/a	=525 DM/a
Wartung/Instandhaltung	
ca. 1% der Investitionskosten pro Jahr	durch Wartungsvertrag
K _{Wartung,a} =200 DM/a	K _{Wartung,a} =200 DM/a
Gesamtkosten	
K _a = K _{Invest,a} +K _{Betrieb,a} +K _{Wartung,a}	K _a = K _{Invest,a} +K _{Betrieb,a} +K _{Wartung,a}
= 2235 DM/a	= 1205 DM/a

Quelle: Datenpool des IfHK, Wolfenbüttel